Agui, J. H., Briassulis, G. & Andreopoulos, Y.
2005
Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech.
524, 143–195.

Andreopoulos, Y., Agui, J. H. & Briassulis, G.
2000
Shock wave–turbulence interactions. Annu. Rev. Fluid Mech.
32, 309–345.

Barenblatt, G. I.
2003
Scaling. Cambridge University Press.

Barre, S., Alem, D. & Bonnet, J. P.
1996
Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J.
34, 968–974.

Batchelor, G. K.
1953
The Theory of Homogeneous Turbulence. Cambridge University Press.

Boukharfane, R., Bouali, Z. & Mura, A.
2018
Evolution of scalar and velocity dynamics in planar shock–turbulence interaction. Shock Waves
28 (6), 1117–1141.

Chisnell, R. F.
1955
The normal motion of a shock wave through a non-uniform one-dimensional medium. Proc. R. Soc. Lond. A
232 (1190), 350–370.

Donzis, D. A.
2012a
Amplification factors in shock–turbulence interactions: effect of shock thickness. Phys. Fluids
24, 011705.

Donzis, D. A.
2012b
Shock structure in shock–turbulence interactions. Phys. Fluids
24, 126101.

Donzis, D. A. & Jagannathan, S.
2013
Fluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech.
733, 221–244.

Freund, J. B.
1997
Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound the vorticity jump across a shock in a non-uniform flow. AIAA J.
35 (4), 740–742.

Gatski, T. B. & Bonnet, J.-P.
2009
Compressibility, Turbulence and High Speed Flow. Elsevier.

Goldenfeld, N.
2006
Roughness-induced critical phenomena in a turbulent flow. Phys. Rev. Lett.
96, 044503.

Grant, H. L. & Nisbet, I. C. T.
1957
The inhomogeneity of grid turbulence. J. Fluid Mech.
2 (3), 263–272.

Hannappel, R. & Friedrich, R.
1995
Direct numerical-simulation of a Mach-2 shock interacting with isotropic turbulence. Appl. Sci. Res.
54, 205–221.

Hesselink, L. & Sturtevant, B.
1988
Propagation of weak shocks through a random medium. J. Fluid Mech.
196, 513–553.

Honkan, A. & Andreopoulos, J.
1992
Rapid compression of grid-generated turbulence by a moving shock-wave. Phys. Fluids
4 (11), 2562–2572.

Inokuma, K., Watanabe, T., Nagata, K., Sasoh, A. & Sakai, Y.
2017
Finite response time of shock wave modulation by turbulence. Phys. Fluids
29 (5), 051701.

Jacquin, L., Cambon, C. & Blin, E.
1993
Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids
3, 2539.

Jagannathan, S. & Donzis, D. A.
2016
Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech.
789, 669–707.

Jamme, S., Cazalbou, J.-B., Torres, F. & Chassaing, P.
2002
Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence. Flow Turbul. Combust.
68, 227–268.

Jimenez, J.
1998
Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech.
376, 139–147.

Kitamura, T., Nagata, K., Sakai, Y. & Ito, Y.
2016
Rapid distortion theory analysis on the interaction between homogeneous turbulence and a planar shock wave. J. Fluid Mech.
802, 108–146.

Kovasznay, L. S. G.
1953
Turbulence in supersonic flow. J. Aerosp. Sci.
20 (10), 657–674.

Larsson, J., Bermejo-Moreno, I. & Lele, S. K.
2013
Reynolds- and Mach-number effects in canonical shock–turbulence interaction. J. Fluid Mech.
717, 293–321.

Larsson, J. & Lele, S. K.
2009
Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids
21, 126101.

Lee, S., Lele, S. K. & Moin, P.
1993
Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech.
251, 533–562.

Lee, S., Lele, S. K. & Moin, P.
1997
Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech.
340, 225–247.

Lele, S. K.
1992a
Compact finite-difference schemes with spectral-like resolution. J. Comput. Phys.
103, 16–42.

Lele, S. K.
1992b
Shock-jump relations in a turbulent flow. Phys. Fluids
4 (12), 2900–2905.

Livescu, D. & Ryu, J.
2016
Vorticity dynamics after the shock–turbulence interaction. Shock Waves
26 (3), 241–251.

Mahesh, K., Lee, S., Lele, S. K. & Moin, P.
1995
Interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech.
300, 383–407.

Mahesh, K., Lele, S. K. & Moin, P.
1997
The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech.
334, 353–379.

Moeckel, W. E.1952 Interaction of oblique shock waves with regions of variable pressure, entropy, and energy. *NACA TN*-2725.

Mohamed, M. S. & Larue, J. C.
1990
The decay power law in grid-generated turbulence. J. Fluid Mech.
219, 195–214.

Moin, P. & Mahesh, K.
1998
Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech.
30, 539–578.

Monin, A. S. & Yaglom, A. M.
1975
Statistical Fluid Mechanics, vol. II. MIT Press.

Moore, F. K.1954 Unsteady oblique interaction of a shock wave with a plane disturbance. *Tech. Rep. NACA Rep.* 1165.

Moser, R. D.
2006
On the validity of the continuum approximation in high Reynolds number turbulence. Phys. Fluids
18 (7), 078105.

Noullez, A., Frisch, U., Wallace, G., Lempert, W. & Miles, R. B.
1997
Transverse velocity increments in turbulent flow using the relief technique. J. Fluid Mech.
339, 287–307.

Obukhov, A. M.
1949
The structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR
13, 58–69.

Quadros, R., Sinha, K. & Larsson, J.
2016a
Kovasznay mode decomposition of velocity–temperature correlation in canonical shock–turbulence interaction. Flow Turbul. Combust.
97, 787–810.

Quadros, R., Sinha, K. & Larsson, J.
2016b
Turbulence energy flux generated by shock/homogeneous–turbulence interaction. J. Fluid Mech.
796, 113–157.

Ribner, H. S.1954*a* Convection of a pattern of vorticity through a shock wave. *NACA TR*-1164.

Ribner, H. S.1954*b* Shock–turbulence interaction and the generation of noise. *NACA TR*-1233.

Ryu, J. & Livescu, D.
2014
Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J. Fluid Mech.
756, R1.

Sagaut, P. & Cambon, C.
2008
Homogeneous Turbulence Dynamics. Cambridge University Press.

Schumacher, J., Scheel, J. D., Krasnov, D., Donzis, D. A., Yakhot, V. & Sreenivasan, K. R.
2014
Small-scale universality in fluid turbulence. Proc. Natl Acad. Sci. USA
111 (30), 10961–10965.

Schumacher, J., Sreenivasan, K. R. & Yakhot, V.
2007
Asymptotic exponents from low-Reynolds-number flows. New J. Phys.
9, 89.

Tanaka, K., Watanabe, T., Nagata, K., Sasoh, A., Sakai, Y. & Hayase, T.
2018
Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence. Phys. Fluids
30 (3), 035105.

Taylor, G. I.
1935
Turbulence in a contracting stream. Z. Angew. Math. Mech.
15, 91–96.

Thompson, P. A.
1984
Compressible Fluid Dynamics. McGraw-Hill.

Velikovich, A. L., Huete, C. & Wouchuk, J. G.
2012
Effect of shock-generated turbulence on the Hugoniot jump conditions. Phys. Rev. E
85, 016301.

Whitham, G. B.
1958
On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech.
4 (4), 337–360.

Widom, B.
1965
Equation of state in the neighborhood of the critical point. J. Chem. Phys.
43 (11), 3898–3905.

Williams, J. E. F. & Howe, M. S.
1973
On the possibility of turbulent thickening of weak shock waves. J. Fluid Mech.
58 (3), 461–480.

Wouchuk, J. G., de Lira, C. H. R. & Velikovich, A. L.
2009
Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E
79, 066315.

Yakhot, V. & Donzis, D. A.
2017
Emergence of multiscaling in a random-force stirred fluid. Phys. Rev. Lett.
119, 044501.

Yakhot, V. & Donzis, D. A.
2018
Anomalous exponents in strong turbulence. Phys. D
384‐385, 12–17.

Zank, G. P., Zhou, Y., Matthaeus, W. H. & Rice, W. K. M.
2002
The interaction of turbulence with shock waves: a basic model. Phys. Fluids
14, 3766–3774.

Zeldovich, Y. B. & Raizer, Y. P.
2002
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.