Skip to main content
×
Home
    • Aa
    • Aa

Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers

  • Jin Lee (a1), Hyung Jin Sung (a2) and Tamer A. Zaki (a1)
Abstract

The effect of large-scale motions (LSMs) on the turbulent/non-turbulent (T/NT) interface is examined in a turbulent boundary layer. Using flow fields from direct numerical simulation, the shape of the interface and near-interface statistics are evaluated conditional on the position of the LSM. The T/NT interface is identified using the vorticity magnitude and a streak detection algorithm is adopted to identify and track the LSMs. Two-point correlation and spectral analysis of variations in the interface height show that the spatial undulation of the interface is longer in streamwise wavelength than the boundary-layer thickness, and grows with the Reynolds number in a similar manner to the LSMs. The average variation in the interface height was evaluated conditional on the position of the LSMs. The result provides statistical evidence that the interface is locally modulated by the LSMs in both the streamwise and spanwise directions. The modulation is different when the coherent structure is high- versus low-speed motion: high-speed structures lead to a wedge-shaped deformation of the T/NT interface, which causes an anti-correlation between the angles of the interface and the internal shear layer. On the other hand, low-speed structures are correlated with crests in the interface. Finally, the sudden changes in turbulence statistics across the interface are in line with the changes in the population of low-speed structures, which consist of slower mean streamwise velocity and stronger turbulence than the high-speed counterparts.

Copyright
Corresponding author
Email address for correspondence: t.zaki@jhu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. J. Adrian 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.

R. J. Adrian , C. D. Meinhart  & C. D. Tomkins 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.

D. K. Bisset , J. C. Hunt  & M. M. Rogers 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.

G. Borrell  & J. Jiménez 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.

K. Chauhan , J. Philip  & I. Marusic 2014a Scaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 751, 298328.

K. Chauhan , J. Philip , C. M. de Silva , N. Hutchins  & I. Marusic 2014b The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.

K. T. Christensen  & R. J. Adrian 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.

D. Chung  & B. J. McKeon 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.

D. J. C. Dennis  & T. B. Nickels 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.

J. Eisma , J. Westerweel , G. Ooms  & G. E. Elsinga 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 055103.

B. Ganapathisubramani , N. Hutchins , W. T. Hambleton , E. K. Longmire  & I. Marusic 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524 (1), 5780.

B. Ganapathisubramani , E. K. Longmire  & I. Marusic 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.

M. J. P. Hack  & T. A. Zaki 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.

J. Hwang , J. Lee , H. J. Sung  & T. A. Zaki 2016 Inner-outer interactions of large-scale structures in turbulent channel flow. J. Fluid Mech. 790, 128157.

T. Ishihara , H. Ogasawara  & J. C. Hunt 2015 Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers. J. Fluids Struct. 53, 5057.

R. Jahanbakhshi  & C. K. Madnia 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.

R. Jahanbakhshi , N. S. Vaghefi  & C. K. Madnia 2015 Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids 27 (10), 105105.

J. Jiménez , S. Hoyas , M. P. Simens  & Y. Mizuno 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.

S. Y. Jung  & T. A. Zaki 2015 The effect of a low-viscosity near-wall film on bypass transition in boundary layers. J. Fluid Mech. 772, 330360.

H. Kong , H. Choi  & J. S. Lee 2000 Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids 12 (10), 25552568.

Y. S. Kwon , N. Hutchins  & J. P. Monty 2016 On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J. Fluid Mech. 794, 516.

Y. S. Kwon , J. Philip , C. M. de Silva , N. Hutchins  & J. P. Monty 2014 The quiescent core of turbulent channel flow. J. Fluid Mech. 751, 228254.

J. Lee , J. Ahn  & H. J. Sung 2015 Comparison of large- and very-large-scale motions in turbulent pipe and channel flows. Phys. Fluids 27 (2), 011502.

J. Lee , S. Y. Jung , H. J. Sung  & T. A. Zaki 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196225.

J. Lee , J. H. Lee , J.-I. Choi  & H. J. Sung 2014 Spatial organization of large-and very-large-scale motions in a turbulent channel flow. J. Fluid Mech. 749, 818840.

A. Lozano-Durán , O. Flores  & J. Jiménez 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.

T. Min  & J. Kim 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.

K. P. Nolan  & T. A. Zaki 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.

M. Rosenfeld , D. Kwak  & M. Vinokur 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94 (1), 102137.

P. Schlatter  & R. Örlü 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.

P. Schlatter  & R. Örlü 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.

P. Schlatter , R. Örlü , Q. Li , G. Brethouwer , J. H. M. Fransson , A. V. Johansson , P. H. Alfredsson  & D. S. Henningson 2009 Turbulent boundary layers up to Re 𝜃 = 2500 studied through simulation and experiment. Phys. Fluids 21 (5), 51702.

J. A. Sillero , J. Jiménez  & R. D. Moser 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 26 (10), 105109.

C. B. da Silva , J. C. R. Hunt , I. Eames  & J. Westerweel 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.

C. M. de Silva , N. Hutchins  & I. Marusic 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.

C. M. de Silva , J. Philip , K. Chauhan , C. Meneveau  & I. Marusic 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111, 15.

R. Vinuesa , A. Bobke , R. Örlü  & P. Schlatter 2016 On determining characteristic length scales in pressure-gradient turbulent boundary layers. Phys. Fluids 28 (5), 055101.

J. M. Wallace 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131158.

T. A. Zaki 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91 (3), 451473.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 129 *
Loading metrics...

Abstract views

Total abstract views: 260 *
Loading metrics...

* Views captured on Cambridge Core between 18th April 2017 - 27th May 2017. This data will be updated every 24 hours.