Skip to main content
×
×
Home

Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers

  • Jin Lee (a1), Hyung Jin Sung (a2) and Tamer A. Zaki (a1)
Abstract

The effect of large-scale motions (LSMs) on the turbulent/non-turbulent (T/NT) interface is examined in a turbulent boundary layer. Using flow fields from direct numerical simulation, the shape of the interface and near-interface statistics are evaluated conditional on the position of the LSM. The T/NT interface is identified using the vorticity magnitude and a streak detection algorithm is adopted to identify and track the LSMs. Two-point correlation and spectral analysis of variations in the interface height show that the spatial undulation of the interface is longer in streamwise wavelength than the boundary-layer thickness, and grows with the Reynolds number in a similar manner to the LSMs. The average variation in the interface height was evaluated conditional on the position of the LSMs. The result provides statistical evidence that the interface is locally modulated by the LSMs in both the streamwise and spanwise directions. The modulation is different when the coherent structure is high- versus low-speed motion: high-speed structures lead to a wedge-shaped deformation of the T/NT interface, which causes an anti-correlation between the angles of the interface and the internal shear layer. On the other hand, low-speed structures are correlated with crests in the interface. Finally, the sudden changes in turbulence statistics across the interface are in line with the changes in the population of low-speed structures, which consist of slower mean streamwise velocity and stronger turbulence than the high-speed counterparts.

Copyright
Corresponding author
Email address for correspondence: t.zaki@jhu.edu
References
Hide All
Adrian R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
Adrian R. J., Meinhart C. D. & Tomkins C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Bisset D. K., Hunt J. C. & Rogers M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.
Borrell G. & Jiménez J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.
Chauhan K., Philip J. & Marusic I. 2014a Scaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 751, 298328.
Chauhan K., Philip J., de Silva C. M., Hutchins N. & Marusic I. 2014b The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.
Christensen K. T. & Adrian R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.
Chung D. & McKeon B. J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.
Corrsin S. & Kistler A. L. 1955 Free-Stream Boundaries of Turbulent Flows. NACA.
Dennis D. J. C. & Nickels T. B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.
Eisma J., Westerweel J., Ooms G. & Elsinga G. E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 055103.
Ganapathisubramani B., Hutchins N., Hambleton W. T., Longmire E. K. & Marusic I. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524 (1), 5780.
Ganapathisubramani B., Longmire E. K. & Marusic I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.
Hack M. J. P. & Zaki T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.
Hwang J., Lee J., Sung H. J. & Zaki T. A. 2016 Inner-outer interactions of large-scale structures in turbulent channel flow. J. Fluid Mech. 790, 128157.
Ishihara T., Ogasawara H. & Hunt J. C. 2015 Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers. J. Fluids Struct. 53, 5057.
Jahanbakhshi R. & Madnia C. K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.
Jahanbakhshi R., Vaghefi N. S. & Madnia C. K. 2015 Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids 27 (10), 105105.
Jiménez J., Hoyas S., Simens M. P. & Mizuno Y. 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.
Jung S. Y. & Zaki T. A. 2015 The effect of a low-viscosity near-wall film on bypass transition in boundary layers. J. Fluid Mech. 772, 330360.
Kong H., Choi H. & Lee J. S. 2000 Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids 12 (10), 25552568.
Kwon Y. S., Hutchins N. & Monty J. P. 2016 On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J. Fluid Mech. 794, 516.
Kwon Y. S., Philip J., de Silva C. M., Hutchins N. & Monty J. P. 2014 The quiescent core of turbulent channel flow. J. Fluid Mech. 751, 228254.
Lee J., Ahn J. & Sung H. J. 2015 Comparison of large- and very-large-scale motions in turbulent pipe and channel flows. Phys. Fluids 27 (2), 011502.
Lee J., Jung S. Y., Sung H. J. & Zaki T. A. 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196225.
Lee J., Lee J. H., Choi J.-I. & Sung H. J. 2014 Spatial organization of large-and very-large-scale motions in a turbulent channel flow. J. Fluid Mech. 749, 818840.
Lozano-Durán A., Flores O. & Jiménez J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.
Min T. & Kim J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.
Nolan K. P. & Zaki T. A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.
Rosenfeld M., Kwak D. & Vinokur M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94 (1), 102137.
Schlatter P. & Örlü R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.
Schlatter P. & Örlü R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.
Schlatter P., Örlü R., Li Q., Brethouwer G., Fransson J. H. M., Johansson A. V., Alfredsson P. H. & Henningson D. S. 2009 Turbulent boundary layers up to Re 𝜃 = 2500 studied through simulation and experiment. Phys. Fluids 21 (5), 51702.
Sillero J. A., Jiménez J. & Moser R. D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 26 (10), 105109.
da Silva C. B., Hunt J. C. R., Eames I. & Westerweel J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.
de Silva C. M., Hutchins N. & Marusic I. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.
de Silva C. M., Philip J., Chauhan K., Meneveau C. & Marusic I. 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111, 15.
Townsend A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University press.
Vinuesa R., Bobke A., Örlü R. & Schlatter P. 2016 On determining characteristic length scales in pressure-gradient turbulent boundary layers. Phys. Fluids 28 (5), 055101.
Wallace J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131158.
Zaki T. A. 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91 (3), 451473.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 299 *
Loading metrics...

Abstract views

Total abstract views: 555 *
Loading metrics...

* Views captured on Cambridge Core between 18th April 2017 - 18th December 2017. This data will be updated every 24 hours.