Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T06:07:25.935Z Has data issue: false hasContentIssue false

A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES

Published online by Cambridge University Press:  26 April 2006

Andreas Muschinski
Affiliation:
Institut für Meteorologie und Klimatologie der Universität Hannover, 30419 Hannover, Germany

Abstract

A Kolmogorov-type similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type large-eddy simulation (LES) at very large LES Reynolds numbers is developed and discussed. The underlying concept is that the LES equations may be considered equations of motion of specific hypothetical fully turbulent non-Newtonian fluids, called ‘LES fluids’. It is shown that the length scale ls = csδ, which scales the magnitude of the variable viscosity in a Smagorinsky-type LES, is the ‘Smagorinsky-fluid’ counterpart of Kolmogorov's dissipation length $\eta = v^{3/4}\epsilon^{-1/4}$ for a Newtonian fluid where ν is the kinematic viscosity and ε is the energy dissipation rate. While in a Newtonian fluid the viscosity is a material parameter and the length ν depends on ε, in a Smagorinsky fluid the length ls is a material parameter and the viscosity depends on ε. The Smagorinsky coefficient cs may be considered the reciprocal of a ‘microstructure Knudsen number’ of a Smagorinsky fluid. A combination of Lilly's (1967) cut-off model with two well-known spectral models for dissipation-range turbulence (Heisenberg 1948; Pao 1965) leads to models for the LES-generated Kolmogorov coefficient αLES as a function of cs. Both models predict an intrinsic overestimation of αLES for finite values of cs. For cs = 0.2 Heisenberg's and Pao's models provide αLES = 1.74 (16% overestimation) and αLES = 2.14 (43% overestimation), respectively, if limcs → (αLES) = 1.5 is ad hoc assumed. The predicted overestimation becomes negligible beyond about cs = 0.5. The requirement cs > 0.5 is equivalent to Δ < 2ls. A similar requirement, L < 2η where L is the wire length of hot-wire anemometers, has been recommended by experimentalists. The value of limcs → (αLES) for a Smagorinsky-type LES at very large LES Reynolds numbers is not predicted by the models and remains unknown. Two critical values of cs are identified. The first critical cs is Lilly's (1967) value, which indicates the cs below which finite-difference-approximation errors become important; the second critical cs is the value beyond which the Reynolds number similarity is violated.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andren, A., Brown, A. R., Graf, J., Mason, P. J., Moeng, C.-H., Niewstadt, F. T. M. & Schumann, U. 1994 Large-eddy simulation of a neutrally stratified boundary layer: a comparison of four computer codes. Q. J. R. Met. Soc. 120, 14571484.Google Scholar
Bardina, J., Ferziger, J. H. & Reynolds, W. C. 1983 Improved turbulence models based on largeeddy simulation of homogeneous, incompressible, turbulent flows. Rep. TF-19. Thermosciences Division, Department of Mechanical Engineering, Stanford University. Stanford, California.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Chasnov, J. R. 1991 Simulation of the Kolmogorov inertial subrange usining an improved subgrid model. Phys. Fluids A 3, 188200.Google Scholar
Chen, S., Doolen, G. D., Krainchnan, R. H. & She, Z.-S. 1993 On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence. Phys. Fluids A 5, 458463.Google Scholar
Corrsin, S. 1961 Turbulent flow. Am. Sci. 49, 300324.Google Scholar
Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.Google Scholar
Deardorff, J. W. 1980 Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Met. 18, 495527.Google Scholar
Galperin, B. & Orszag, S. A. (Eds.) 1993 Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press.
Germano, M. Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.Google Scholar
Görtler, H. 1975 Dimensionsanalyse. Springer.
Hauf, T. 1984 Turbulenzmessungen mit dem Forschungsflugzeug Falcon. Met. Rdsch. 37, 163176.Google Scholar
Heisenberg, W. 1948 Zur statistischen Theorie der Turbulenz. Z. Phys. 124. 628657.Google Scholar
Hunt, J. C. R., Phillips O. M. & Williams, D. (eds.) 1991 Turbulence and stochastic processes: Kolmogorov's ideas 50 years on. Proc. R. Soc. Lond. A 434, 1240.
Kaltenbach, H.-J., Gerz, T., & Schumann, U. 1994 Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech. 280, 140.Google Scholar
Kolmogorov, A. N. 1941a The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305. (Engl. Transl. Proc. R. Soc. Lond. A 434, 9–13, 1991.)Google Scholar
Kolmogorov, A. N. 1941b Dissipation of energy in the locally isotropic turbulence. Dokl Akad. Nauk SSSR 30, 1618. (Engl. Transl. Proc. R. Soc. Lond. A 434, 15–17, 1991.)Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.Google Scholar
Kutznetsov, V. R., Praskovsky, A. A. & Sabelnikov, V. A. 1992 Fine-scale turbulence structure of intermittent shear flows. J. Fluid Mech. 243, 599622.Google Scholar
Leonard, A. 1974 Energy cascade in large eddy simulations of turbulent fluid flows. Adv. Geophys. 18 A, 237248.Google Scholar
Lilly, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Sci. Comput. Symp. Environm. Sci. (Yorktown Heights, Nov. 14th to 15th 1966), pp. 195210. Thomas J. Watson Res. Center, Yorktown Heights, N.Y.Google Scholar
Mason, P. J. 1994 Large-eddy simulation: A critical review of the technique. Q. J. R. Met. Soc. 120, 126.Google Scholar
Mason, P. J. & Brown, A. R. 1994 The sensitivity of large-eddy simulations of turbulent shear flow to subgrid models. Boundary-Layer Met. 70, 133150.Google Scholar
Mason, P. J. & Callen, N. S. 1986 On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. J. Fluid Mech. 162, 439462.Google Scholar
Mason, P. J. & Thomson, D. J. 1992 Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 5178.Google Scholar
McComb, W. D. 1990 The Physics of Fluid Turbulence. Clarendon Press.
Mestayer, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475503.Google Scholar
Métais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157194.Google Scholar
Moeng, C.-H. & Wyngaard, J. C. 1988 Spectral analysis of large-eddy simulations in the convective boundary layer. J. Atmos. Sci. 45, 35733587.Google Scholar
Muschinski, A. & Roth, R. 1993 A local interpretation of Heisenberg's transfer theory. Beitr. Phys. Atmos. 66, 335346.Google Scholar
Oncley, S. P., Businger, J. A., Itsweire, E. C., Friehe, C. A., LaRue, J. C. & Chang, S. S. 1990 Surface layer profiles and turbulence measurements over uniform land under near-neutral conditions. Preprints: Ninth Symp. on Turbulent Diffusion 30 April — 3 May. 1990, Riso, Roskilde, Denmark, pp. 237240. Am. Met. Soc., Boston, MA.
Pao, Y.-H. 1965 Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids, 8, 10631075.Google Scholar
Reynolds, W. C. 1990 The potential and limitations of direct and large eddy simulations. In Whither Turbulence? Turbulence at the Crossroads (ed. J. L. Lumley), pp. 313343. Springer.
Saddoughi S. G. & Veerevalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.Google Scholar
Schmidt, H. & Schumann, U. 1989 Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511562.Google Scholar
Schumann, U. 1994 On relations between constants in homogeneous turbulence models and Heisenberg's spectral model. Beitr. Phys. Atmos. 67, 141147.Google Scholar
Schumann, U. 1995a Stochastic backscatter of turbulence energy and scalar variance by random subgrid-scale fluxes. Proc. R. Soc. Lond. A 451, 293318, and Erratum Proc. R. Soc. Lond. A 451, 811.Google Scholar
Schumann, U. & Gerz, T. 1995 Turbulent mixing in stably stratified shear flows. J. Appl. Met. 34, 3348.Google Scholar
Scotti, A., Meneveau, C. & Lilly, D. K. 1993 Generalized Smagorinsky model for anisotropic grids. Phys. Fluids A 5, 23062308.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev. 91, 99164.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. The MIT Press.
Wyngaard, J. C. & Tennekes, H. 1970 Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys. Fluids 13, 19621969.Google Scholar
Yaglom, A.M. 1981 Laws of small-scale turbulence in atmosphere and ocean (in commeration of the 40th anniversary of the theory of locally isotropic turbulence). Izv. Atmos. Ocean. Phys. 17, 919935.Google Scholar
Yaglom, A. M. 1994 A. N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research. Ann. Rev. Fluid Mech. 26, 122.Google Scholar