Skip to main content Accessibility help

Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes

  • G. Di Ilio (a1), B. Dorschner (a2), G. Bella (a3), S. Succi (a4) (a5) and I. V. Karlin (a2)...


We propose a body-fitted mesh approach based on a semi-Lagrangian streaming step combined with an entropy-based collision model. After determining the order of convergence of the method, we analyse the flow past a circular cylinder in the lower subcritical regime, at a Reynolds number $Re=3900$ , in order to assess the numerical performances for wall-bounded turbulence. The results are compared to experimental and numerical data available in the literature. Overall, the agreement is satisfactory. By adopting an efficient local refinement strategy together with the enhanced stability features of the entropic model, this method extends the range of applicability of the lattice Boltzmann approach to the solution of realistic fluid dynamics problems, at high Reynolds numbers, involving complex geometries.


Corresponding author

Email address for correspondence:


Hide All
Amati, G., Succi, S. & Benzi, R. 1997 Turbulent channel flow simulations using a coarse-grained extension of the lattice Boltzmann method. Fluid Dyn. Res. 19, 289302.
Ansumali, S. & Karlin, I. V. 2002 Entropy function approach to the lattice Boltzmann method. J. Stat. Phys. 107, 291308.
Bangerth, W., Hartmann, R. & Kanschat, G. 2007 deal.II – A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33, 24.
Bardow, A., Karlin, I. V. & Gusev, A. A. 2006 General characteristic-based algorithm for off-lattice Boltzmann simulations. Europhys. Lett. 75, 434440.
Beaudan, P. & Moin, P.1994 Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number Report No. TF-62, Department of Mechanical Engineering, Stanford University.
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145197.
Boghosian, B. M., Yepez, J., Coveney, P. V. & Wagner, A. J. 2001 Entropic lattice Boltzmann methods. Proc. R. Soc. Lond. A 457, 717766.
Bouzidi, M., Firdaouss, M. & Lallemand, P. 2001 Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452.
Briscolini, M., Santangelo, P., Succi, S. & Benzi, R. 1994 Extended self-similarity in the numerical simulation of three-dimensional homogeneous flows. Phys. Rev. E 50, R1745(R).
Bösch, F., Chikatamarla, S. S. & Karlin, I. V. 2015 Entropic multirelaxation lattice Boltzmann models for turbulent flows. Phys. Rev. E 92, 043309.
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.
Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S. & Yakhot, V. 2003 Extended Boltzmann kinetic equation for turbulent flows. Science 301, 633636.
Corke, T. C. & Thomas, F. O. 2015 Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects. Annu. Rev. Fluid Mech. 47 (1), 479505.
Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G. & Succi, S. 2017 Hybrid lattice Boltzmann method on overlapping grids. Phys. Rev. E 95, 013309.
Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G. & Succi, S. 2018 Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. Comput. Fluids 166, 200208.
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.
Dong, S., Karniadakis, G. E., Ekmekci, A. & Rockwell, D. 2006 A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185207.
Dorschner, B., Bösch, F., Chikatamarla, S. S., Boulouchos, K. & Karlin, I. V. 2016a Entropic multi-relaxation time lattice Boltzmann model for complex flows. J. Fluid Mech. 801, 623651.
Dorschner, B., Chikatamarla, S. S. & Karlin, I. V. 2017a Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions. Phys. Rev. E 95, 063306.
Dorschner, B., Chikatamarla, S. S. & Karlin, I. V. 2017b Transitional flows with the entropic lattice Boltzmann method. J. Fluid Mech. 824, 388412.
Dorschner, B., Frapolli, N., Chikatamarla, S. S. & Karlin, I. V. 2016b Grid refinement for entropic lattice Boltzmann models. Phys. Rev. E 94, 053311.
Filippova, O. & Hänel, D. 1998 Grid refinement for lattice-BGK models. J. Comput. Phys. 147, 219228.
Gehrke, M., Janssen, C. F. & Rung, T. 2017 Scrutinizing lattice Boltzmann methods for direct numerical simulations of turbulent channel flows. Comput. Fluids 156, 247263.
Graham, J. 2017 Rapid distortion of turbulence into an open turbine rotor. J. Fluid Mech. 825, 764794.
Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T. et al. 2005 An overview of the Trilinos project. ACM Trans. Math. Softw. 31, 397423.
Higuera, F. J. & Jimenez, J. 1989 Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663668.
Higuera, F. J., Succi, S. & Benzi, R. 1989 Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345349.
Hou, S., Sterling, J., Chen, S. & Doolen, G. D. 1996 A lattice Boltzmann subgrid model for high Reynolds number flows. Fields Inst. Commun. 6, 151166.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1998 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report, CTR-S88, pp. 193208.
Imamura, T., Suzuki, K., Nakamura, T. & Yoshida, M. 2005 Flow simulation around an airfoil by lattice Boltzmann method on generalized coordinates. AIAA J. 43, 19681973.
Jahanshaloo, L., Pouryazdanpanah, E., Azwadi, N. & Sidik, C. 2013 A review on the application of the lattice Boltzmann method for turbulent flow simulation. Numer. Heat Transfer 64, 938953.
Karlin, I. V., Ansumali, S., Angelis, E. D., Öttinger, H. C. & Succi, S.2003 Entropic lattice Boltzmann method for large scale turbulence simulation. arXiv:cond-mat/0306003 [cond-mat.stat-mech].
Karlin, I. V., Bösch, F. & Chikatamarla, S. S. 2014 Gibbs’ principle for the lattice-kinetic theory of fluid dynamics. Phys. Rev. E 90, 031302(R).
Karlin, I. V., Ferrante, A. & Öttinger, H. C. 1999 Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47, 182188.
Kravchenko, A. G. & Moin, P. 2000 Numerical studies of flow over a circular cylinder at Re D = 3900. Phys. Fluids 12, 403417.
Krämer, A., Küllmer, K., Reith, D., Joppich, W. & Foysi, H. 2017 Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows. Phys. Rev. E 95, 023305.
Lee, T. & Lin, C. L. 2001 A characteristic galerkin method for discrete Boltzmann equation. J. Comput. Phys. 171, 336356.
Lee, T. & Lin, C. L. 2003 An Eulerian description of the streaming process in the lattice Boltzmann equation. J. Comput. Phys. 185, 445471.
Li, K., Zhong, C., Zhuo, C. & Cao, J. 2012 Non-body-fitted Cartesian-mesh simulation of highly turbulent flows using multi-relaxation-time lattice Boltzmann method. Comput. Maths Applics. 63, 14811496.
Lourenco, L. M. & Shih, C.1993 Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Published in Beaudan and Moin (1994), data taken from Kravchenko and Moin (2000).
Ma, X., Karamonos, G. S. & Karniadakis, G. E. 2000 Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 2965.
Malaspinas, O. & Sagaut, P. 2012 Consistent subgrid scale modelling for lattice Boltzmann methods. J. Fluid Mech. 700, 514542.
McNamara, G. R. & Zanetti, G. 1988 Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 23322335.
Min, M. & Lee, T. 2011 A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows. J. Comput. Phys. 230, 245259.
Namburi, M., Krithivasan, S. & Ansumali, S. 2016 Crystallographic lattice Boltzmann method. Sci. Rep. 6, 27172.
Nathen, P., Gaudlitz, D., Krause, M. J. & Adams, N. A. 2017 On the stability and accuracy of the BGK, MRT and RLB Boltzmann schemes for the simulation of turbulent flows. J. Commun. Comput. Phys. 23, 846876.
Norberg, C. 1994 An experimental investigation of flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287316.
Ong, L. & Wallace, J. 1996 The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20, 441453.
Orszag, S. A. 1971 Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid Mech. 49, 75112.
Patel, S. & Lee, T. 2016 A new splitting scheme to the discrete Boltzmann equation for non-ideal gases on non-uniform meshes. J. Comput. Phys. 327, 799809.
Patil, D. V. 2013 Chapman–Enskog analysis for finite-volume formulation of lattice Boltzmann equation. Physica A 392, 27012712.
Patil, D. V. & Lakshmisha, K. N. 2009 Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J. Comput. Phys. 228, 52625279.
Pellerin, N., Leclaire, S. & Reggio, M. 2017 Solving incompressible fluid flows on unstructured meshes with the lattice Boltzmann flux solver. Engng Appl. Comput. Fluid Mech. 11, 310327.
Peng, G., Xi, H., Duncan, C. & Chou, S. H. 1998 Lattice Boltzmann method on irregular meshes. Phys. Rev. E 58, R4124R4127.
Peng, G., Xi, H., Duncan, C. & Chou, S. H. 1999 A finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys. Rev. E 59, 46754682.
Rai, M. M. 2010 A computational investigation of the instability of the detached shear layer in the wake of a circular cylinder. J. Fluid Mech. 659, 375404.
Rajani, B. N., Kandasamy, A. & Majumdar, S. 2016 LES of flow past circular cylinder at Re = 3900. J. Appl. Fluid Mech. 9, 14211435.
Rao, P. R. & Schaefer, L. A. 2015 Numerical stability of explicit off-lattice Boltzmann schemes: a comparative study. J. Comput. Phys. 285, 251264.
Rogallo, R. S. & Moin, P. 1984 Numerical simulation of turbulent flows. Ann. Rev. Fluid Mech. 16, 99137.
Shu, C., Peng, Y., Zhou, C. F. & Chew, Y. T. 2006 Application of Taylor series expansion and Least-squares-based lattice Boltzmann method to simulate turbulent flows. J. Turbul. 7, N38.
Shu, C., Wang, Y., Teo, C. J. & Wu, J. 2014 Development of lattice Boltzmann flux solver for simulation of incompressible flows. Adv. Appl. Math. Mech. 6, 436460.
Succi, S. 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press.
Succi, S. 2015 Lattice Boltzmann 2038. Europhys. Lett. 109, 50001.
Tseng, Y. H. & Ferziger, J. H. 2003 A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 593623.
Ubertini, S., Bella, G. & Succi, S. 2003 Lattice Boltzmann method on unstructured grids: further developments. Phys. Rev. E 68, 016701.
Ubertini, S., Bella, G. & Succi, S. 2006 Unstructured lattice Boltzmann equation with memory. Math. Comput. Simul. 72, 237241.
Ubertini, S., Succi, S. & Bella, G. 2004 Lattice Boltzmann schemes without coordinates. Phil. Trans. R. Soc. Lond. A 362, 17631771.
Wissink, J. G. & Rodi, W. 2008 Numerical study of the near wake of a circular cylinder. Intl J. Heat Fluid Flow 29, 10601070.
Xi, H., Peng, G. & Chou, S. H. 1999 Finite-volume lattice Boltzmann method. Phys. Rev. E 59, 62026205.
You, D. & Moin, P. 2006 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Annual Research Briefs, Center for Turbulence Research pp. 4153.
Zarghami, A., Maghrebi, M. J., Ghasemi, J. & Ubertini, S. 2012 Lattice Boltzmann finite volume formulation with improved stability. Commun. Comput. Phys. 12, 4264.
Zhu, L., Wang, P. & Guo, Z. 2017 Performance evaluation of the general characteristics based off-lattice Boltzmann scheme and DUGKS for low speed continuum flows. J. Comput. Phys. 333, 227246.
Zhuo, C., Zhong, C., Li, K., Xiong, S., Chen, X. & Cao, J. 2010 Application of lattice Boltzmann method to simulation of compressible turbulent flow. Commun. Comput. Phys. 8, 12081223.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes

  • G. Di Ilio (a1), B. Dorschner (a2), G. Bella (a3), S. Succi (a4) (a5) and I. V. Karlin (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.