Skip to main content Accessibility help
×
Home

Simulation study of particle clouds in oscillating shear flow

  • Amanda A. Howard (a1) and Martin R. Maxey (a1)

Abstract

Simulations of cylindrical clouds of concentrated, neutrally buoyant, suspended particles are used to investigate the dispersion of the particles in an oscillating Couette flow. In experiments by Metzger & Butler (Phys. Fluids, vol. 24 (2), 2012, 021703) with spherical clouds of non-Brownian particles, the clouds are shown to elongate at volume fraction $\unicode[STIX]{x1D719}=0.4$ but form ‘galaxies’ where the cloud rotates as a single body with extended arms when $\unicode[STIX]{x1D719}>0.4$ and the ratio of the cloud radius to particle radius, $R/a$ , is sufficiently large. The simulations, which use the force coupling method, are completed for $\unicode[STIX]{x1D719}=0.4$ and $\unicode[STIX]{x1D719}=0.55$ , with $R/a$ between $5$ and $20$ . The cloud shape for $\unicode[STIX]{x1D719}=0.4$ is shown to be reversible at low strain amplitude, and extend in the streamwise direction along the centre of the cloud at moderate strain amplitude. For higher strain amplitude the clouds extend near the channel walls to form a parallelogram. The results demonstrate that the particle contact force determines the transition between these states and plays a large role in the irreversibility of the parallelograms. Rotating galaxies form at $\unicode[STIX]{x1D719}=0.55$ with $R/a\geqslant 15$ , and are characterized by a particle-induced flow in the wall-normal direction.

Copyright

Corresponding author

Email address for correspondence: Martin_Maxey@Brown.edu

References

Hide All
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (03), 545570.
Blanc, F., Peters, F. & Lemaire, E. 2011 Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett. 107 (20), 208302.
Corté, L., Chaikin, P. M., Gollub, J. P. & Pine, D. J. 2008 Random organization in periodically driven systems. Nat. Phys. 4 (5), 420424.
Cui, F. R., Howard, A. A., Maxey, M. R. & Tripathi, A. 2017 Dispersion of a suspension plug in oscillatory pressure-driven flow. Phys. Rev. Fluids 2 (9), 094303.
Da Cunha, F. R. & Hinch, E. J. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.
Drew, D. A. 1983 Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261291.
Durlofsky, L. & Brady, J. F. 1987 Analysis of the brinkman equation as a model for flow in porous media. Phys. Fluids 30 (11), 33293341.
Gallier, S., Lemaire, E., Peters, F. & Lobry, L. 2014 Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 757, 514549.
Metzger, B. & Butler, J. E. 2010 Irreversibility and chaos: Role of long-range hydrodynamic interactions in sheared suspensions. Phys. Rev. E 82 (5), 51406.
Metzger, B. & Butler, J. E. 2012 Clouds of particles in a periodic shear flow. Phys. Fluids 24 (2), 021703.
Metzger, B., Pham, P. & Butler, J. E. 2013 Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys. Rev. E 87 (5), 052304.
Pednekar, S., Chun, J. & Morris, J. 2018 Bidisperse and polydisperse suspension rheology at large solid fraction. J. Rheol. 62 (2), 513526.
Peters, F., Ghigliotti, G., Gallier, S., Blanc, F., Lemaire, E. & Lobry, L. 2016 Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: a numerical study. J. Rheol. 60 (4), 715732.
Pham, P., Butler, J. E. & Metzger, B. 2016 Origin of critical strain amplitude in periodically sheared suspensions. Phys. Rev. Fluids 1 (2), 022201.
Pham, P., Metzger, B. & Butler, J. E. 2015 Particle dispersion in sheared suspensions: crucial role of solid-solid contacts. Phys. Fluids 27 (5), 051701.
Pine, D. J., Gollub, J. P., Brady, J. F. & Leshanksy, A. M. 2005 Chaos and threshold for irreversibility in sheared suspensions. Nature 438, 9971000.
Rampall, I., Smart, J. R. & Leighton, D. T. 1997 The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech. 339, 124.
Singh, A., Mari, R., Denn, M. M. & Morris, J. F. 2018 A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62 (2), 457468.
Townsend, A. K. & Wilson, H. J. 2017 Frictional shear thickening in suspensions: The effect of rigid asperities. Phys. Fluids 29 (12), 121607.
Yeo, K. & Maxey, M. R. 2011 Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.
Zarraga, I. E. & Leighton, D. T. 2002 Measurement of an unexpectedly large shear-induced self-diffusivity in a dilute suspension of spheres. Phys. Fluids 14 (7), 21942201.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movie

Howard et. al. supplementary movie
Particle locations over two periods plotted with the averaged wall-normal velocity 〈v〉 for R/a = 20 and H/a = 80.

 Video (3.9 MB)
3.9 MB

Simulation study of particle clouds in oscillating shear flow

  • Amanda A. Howard (a1) and Martin R. Maxey (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed