Skip to main content Accesibility Help
×
×
Home

Simulations of bypass transition

  • R. G. JACOBS (a1) and P. A. DURBIN (a1)
Abstract

Bypass transition in an initially laminar boundary layer beneath free-stream turbulence is simulated numerically. New perspectives on this phenomenon are obtained from the numerical flow fields. Transition precursors consist of long backward jets contained in the fluctuating u-velocity field; they flow backwards relative to the local mean velocity. The jets extend into the upper portion of the boundary layer, where they interact with free-stream eddies. In some locations a free-stream perturbation to the jet shear layer develops into a patch of irregular motion – a sort of turbulent spot. The spot spreads longitudinally and laterally, and ultimately merges into the downstream turbulent boundary layer. Merging spots maintain the upstream edge of the turbulent region. The jets, themselves, are produced by low-frequency components of the free-stream turbulence that penetrate into the laminar boundary layer. Backward jets are a component of laminar region streaks.

A method to construct turbulent inflow from Orr–Sommerfeld continuous modes is described. The free-stream turbulent intensity was chosen to correspond with the experiment by Roach & Brierly (1990). Ensemble-averaged numerical data are shown to be in good agreement with laboratory measurements.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed