Skip to main content Accessibility help

Singular jets during the collapse of drop-impact craters

  • S. T. Thoroddsen (a1), K. Takehara (a2), H. D. Nguyen (a2) (a3) and T. G. Etoh (a2)


When a drop impacts on a deep pool at moderate velocity it forms a hemispheric crater which subsequently rebounds to the original free-surface level, often forming Worthington jets, which rise vertically out of the crater centre. Under certain impact conditions the crater collapse forms a dimple at its bottom, which pinches off a bubble and is also known to be associated with the formation of a very fast thin jet. Herein we use two ultra-high-speed video cameras to observe simultaneously the dimple collapse and the speed of the resulting jet. The fastest fine jets are observed at speeds of approximately $50~\text{m}~\text{s}^{-1}$ and emerge when the dimple forms a cylinder which retracts without pinching off a bubble. We also identify what appears to be micro-bubbles at the bottom of this cylinder, which we propose are caused by local cavitation from extensional stress in the flow entering the jet. The radial collapse of the dimple does not follow capillary-inertial power laws nor is its bottom driven by a curvature singularity, as has been proposed in some earlier studies. The fastest jets are produced by pure inertial focusing and emerge at finite dimple size, bypassing the pinch-off singularity. These jets emerge from the liquid contained originally in the drop. Finally, we measure directly the compression of the central bubble following the pinch-off and the subsequent large volume oscillation, which occurs at frequencies slightly above the audible range at approximately 23 kHz.


Corresponding author

Email address for correspondence:


Hide All
Bergmann, R., van der Meer, D., Stijnman, M., Sandtke, M., Prosperetti, A. & Lohse, D. 2006 Giant bubble pinch-off. Phys. Rev. Lett. 96, 154505.
Boulton-Stone, J. M. & Blake, J. R. 1993 Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437466.
Brenner, M. P. 2000 Jets from a singular surface. Nature 403, 377378.
Burton, J. C., Waldrep, R. & Taborek, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94, 184502.
Das, S. P. & Hopfinger, E. J. 2008 Parametrically forced gravity waves in a circular cylinder and finite-time singularity. J. Fluid Mech. 599, 205228.
Deike, L., Ghabache, E., Liger-Belair, G., Das, A. K., Zaleski, S., Popinet, S. & Séon, T. 2018 Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603.
Deng, Q., Anilkumar, V. & Wang, T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 30003008.
Eggers, J., Fontelos, M. A., Leppinen, D. & Snoeijer, J. 2007 Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett. 98, 094502.
Etoh, T. G. et al. 2003 An image sensor which captures 100 consecutive frames at 1000 000 frames s-1 . IEEE Trans. Electron Devices 50, 144151.
Ganan-Calvo, A. M. 2017 Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys. Rev. Lett. 119, 204502.
Gekle, S. & Gordillo, J. M. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.
Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502.
Ghabache, E., Antkowiak, A., Josserand, C. & Séon, T. 2014 On the physics of fizziness: how bubbles bursting controls droplets ejection. Phys. Fluids 26, 121701.
Gordillo, J. M., Sevilla, A., Rodríguez-Rodríguez, J. & Martínez-Bazán, C. 2005 Axisymmetric bubble pinch-off at high Reynolds numbers. Phys. Rev. Lett. 95, 194501.
Inoue, C., Izato, Y., Miyake, A. & Villermaux, E. 2017 Direct self-sustained fragmentation cascade of reactive droplets. Phys. Rev. Lett. 118, 074502.
Inoue, C., Koshi, M., Terashima, H., Himeno, T. & Watanabe, T. 2013 Origin of droplets in sparkling fireworks. Sci. Technol. Energetic Mater. 74, 106111.
Keim, N. C., Moller, P., Zhang, W. W. & Nagel, S. N. 2006 Breakup of air bubbles inwater: memory and breakdown of cylindrical symmetry. Phys. Rev. Lett. 97, 144503.
Kientzler, C. F., Arons, A. B., Blanchard, D. C. & Woodcock, A. H. 1954 Photographic investigation of the projection of droplets by bubbles bursting at a water surface. Tellus 6, 17.
Krishnan, S., Hopfinger, E. J. & Puthenveettil, B. A. 2017 On the scaling of jetting from bubble collapse at a liquid surface. J. Fluid Mech. 822, 791812.
Liow, L. J. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.
MacIntyre, F. 1972 Flow patterns in breaking bubbles. J. Geophys. Res. 77, 52115228.
Michon, G.-J., Josserand, C. & Séon, T. 2017 Jet dynamics post drop impact on a deep pool. Phys. Rev. Fluids 2, 023601.
Morton, D., Rudman, M. & Liow, J.-L. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12, 747763.
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.
Oguz, H. N. & Prosperetti, A. 1991 Numerical calculation of the underwater noise of rain. J. Fluid Mech. 228, 417442.
Prosperetti, A. & Oguz, H. N. 1993 The impact of drops on liquid surfaces and the underwater noise of rain. Annu. Rev. Fluid Mech. 25, 577602.
Pumphrey, H. C. & Elmore, P. A. 1990 The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.
Ray, B., Biswas, G. & Sharma, A. 2015 Regimes during drop impact on a liquid pool. J. Fluid Mech. 768, 492523.
Rein, M. 1996 The transition regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.
Séon, T. & Liger-Belair, G. 2017 Effervescence in champagne and sparkling wines: from bubble bursting to droplet evaporation. Eur. Phys. J. Special Top. 226, 117156.
Thoraval, M.-J., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. T. 2012 Von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007a Experiments on bubble pinch-off. Phys. Fluids 19, 042101.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007b Micro-jetting from wave-focusing on oscillating drops. Phys. Fluids 19, 052101.
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
Tran, T. T., Lee, E. G., Lee, I. S., Woo, N. S., Han, S. M., Kim, Y. J. & Hwang, W. R. 2016 Hydrodynamic extensional stress during the bubble bursting process for bioreactor system design. Korea-Aust. Rheol. J. 28, 315326.
Walls, P. L. L., Henaux, L. & Bird, J. C. 2015 Jet drops from bursting bubbles: how gravity and viscosity couple to inhibit droplet production. Phys. Rev. E 92, 021002(R).
Walls, P. L. L., McRae, O., Natarajan, V., Johnson, C., Antoniou, C. & Bird, J. C. 2017 Quantifying the potential for bursting bubbles to damage suspended cells. Sci. Rep. 7, 15102.
Worthington, A. M. & Cole, R. S. 1897 Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. A 189, 137148.
Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403, 401404.
Zhang, F., Thoraval, M.-J., Thoroddsen, S. T. & Taborek, P. 2015 Partial coalescence from bubbles to drops. J. Fluid Mech. 782, 209239.
Zhang, L. V., Toole, J., Fezzaa, K. & Deegan, R. D. 2012 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO
Type Description Title

Thoroddsen et al. movie 1
Video with Figure 1(a).

 Video (567 KB)
567 KB
Supplementary materials

Thoroddsen et al. supplementary material
Supplementary material

 PDF (191 KB)
191 KB

Thoroddsen et al. movie 2
Video with Figure 1(b).

 Video (507 KB)
507 KB

Thoroddsen et al. movie 3
Video with Figure 1(c)

 Video (332 KB)
332 KB

Thoroddsen et al. movie 4
Video with Figure 4(d).

 Video (488 KB)
488 KB

Thoroddsen et al. movie 5
Video with Figure 7(a).

 Video (418 KB)
418 KB

Thoroddsen et al. movie 6
Video with Figure 7(b).

 Video (485 KB)
485 KB

Thoroddsen et al. movie 7
Video with Figure 8.

 Video (420 KB)
420 KB

Singular jets during the collapse of drop-impact craters

  • S. T. Thoroddsen (a1), K. Takehara (a2), H. D. Nguyen (a2) (a3) and T. G. Etoh (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.