Skip to main content
    • Aa
    • Aa

The singular perturbation of surface tension in Hele-Shaw flows


Morphological instabilities are common to pattern formation problems such as the non-equilibrium growth of crystals and directional solidification. Very small perturbations caused by noise originate convoluted interfacial patterns when surface tension is small. The generic mechanisms in the formation of these complex patterns are present in the simpler problem of a Hele-Shaw interface. Amid this extreme noise sensitivity, what is then the role played by small surface tension in the dynamic formation and selection of these patterns? What is the asymptotic behaviour of the interface in the limit as surface tension tends to zero? The ill-posedness of the zero-surface-tension problem and the singular nature of surface tension pose challenging difficulties in the investigation of these questions. Here, we design a novel numerical method that greatly reduces the impact of noise, and allows us to accurately capture and identify the singular contributions of extremely small surface tensions. The numerical method combines the use of a compact interface parametrization, a rescaling of the governing equations, and very high precision. Our numerical results demonstrate clearly that the zero-surface-tension limit is indeed singular. The impact of a surface-tension-induced complex singularity is revealed in detail. The singular effects of surface tension are first felt at the tip of the interface and subsequently spread around it. The numerical simulations also indicate that surface tension defines a length scale in the fingers developing in a later stage of the interface evolution.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 75 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.