Skip to main content Accessibility help
×
Home

Slip length for longitudinal shear flow over an arbitrary-protrusion-angle bubble mattress: the small-solid-fraction singularity

  • Ory Schnitzer (a1)

Abstract

We study the effective slip length for unidirectional flow over a superhydrophobic mattress of bubbles in the small-solid-fraction limit $\unicode[STIX]{x1D716}\ll 1$ . Using scaling arguments and utilising an ideal-flow analogy we elucidate the singularity of the slip length as $\unicode[STIX]{x1D716}\rightarrow 0$ : relative to the periodicity it scales as $\log (1/\unicode[STIX]{x1D716})$ for protrusion angles $0\leqslant \unicode[STIX]{x1D6FC}<\unicode[STIX]{x03C0}/2$ and as $\unicode[STIX]{x1D716}^{-1/2}$ for $0<\unicode[STIX]{x03C0}/2-\unicode[STIX]{x1D6FC}=O(\unicode[STIX]{x1D716}^{1/2})$ . We continue with a detailed asymptotic analysis using the method of matched asymptotic expansions, where ‘inner’ solutions valid close to the solid segments are matched with ‘outer’ solutions valid on the scale of the periodicity, where the bubbles protruding from the solid grooves appear to touch. The analysis yields asymptotic expansions for the effective slip length in each of the protrusion-angle regimes. These expansions overlap for intermediate protrusion angles, which allows us to form a uniformly valid approximation for arbitrary protrusion angles $0\leqslant \unicode[STIX]{x1D6FC}\leqslant \unicode[STIX]{x03C0}/2$ . We thereby explicitly describe the transition with increasing protrusion angle from a logarithmic to an algebraic small-solid-fraction slip-length singularity.

Copyright

Corresponding author

Email address for correspondence: o.schnitzer@imperial.ac.uk

References

Hide All
Ablowitz, M. J. & Fokas, A. S. 2003 Complex Variables: Introduction and Applications. Cambridge University Press.
Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96 (6), 066001.
Choi, C.-H., Westin, K. J. A. & Breuer, K. S. 2003 Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15 (10), 28972902.
Cottin-Bizonne, C., Barrat, J.-L., Bocquet, L. & Charlaix, E. 2003 Low-friction flows of liquid at nanopatterned interfaces. Nat. Mater. 2 (4), 237240.
Crowdy, D. 2010 Slip length for longitudinal shear flow over a dilute periodic mattress of protruding bubbles. Phys. Fluids 22 (12), 121703.
Crowdy, D. 2011a Frictional slip lengths and blockage coefficients. Phys. Fluids 23 (9), 091703.
Crowdy, D. 2011b Frictional slip lengths for unidirectional superhydrophobic grooved surfaces. Phys. Fluids 23 (7), 072001.
Crowdy, D. 2015a Effective slip lengths for longitudinal shear flow over partial-slip circular bubble mattresses. Fluid Dyn. Res. 47 (6), 065507.
Crowdy, D. 2015b A transform method for Laplace’s equation in multiply connected circular domains. IMA J. Appl. Maths 80 (6), 19021931.
Crowdy, D. G. 2016 Analytical formulae for longitudinal slip lengths over unidirectional superhydrophobic surfaces with curved menisci. J. Fluid Mech. 791, R7.
Davis, A. M. J. & Lauga, E. 2009 Geometric transition in friction for flow over a bubble mattress. Phys. Fluids 21 (1), 011701.
Davis, A. M. J. & Lauga, E. 2010 Hydrodynamic friction of fakir-like superhydrophobic surfaces. J. Fluid Mech. 661, 402411.
Haase, A. S., Wood, J. A., Lammertink, R. G. & Snoeijer, J. H. 2016 Why bumpy is better: the role of the dissipation distribution in slip flow over a bubble mattress. Phys. Rev. Fluids 1 (5), 054101.
Hyväluoma, J. & Harting, J. 2008 Slip flow over structured surfaces with entrapped microbubbles. Phys. Rev. Lett. 100 (24), 246001.
Kamrin, K., Bazant, M. Z. & Stone, H. A. 2010 Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J. Fluid Mech. 658, 409437.
Karatay, E., Haase, A. S., Visser, C. W., Sun, C., Lohse, D., Tsai, P. A. & Lammertink, R. G. H. 2013 Control of slippage with tunable bubble mattresses. Proc. Natl Acad. Sci. USA 110 (21), 84228426.
Koishi, T., Yasuoka, K., Fujikawa, S., Ebisuzaki, T. & Zeng, X. C. 2009 Coexistence and transition between cassie and wenzel state on pillared hydrophobic surface. Proc. Natl Acad. Sci. USA 106 (21), 84358440.
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489, 5577.
Lee, C. & Choi, C.-H. 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101 (6), 064501.
Luca, E., Marshall, J. S. & Karamanis, G.2017 Longitudinal shear flow over a bubble mattress with curved menisci: arbitrary protrusion angle and solid fraction. In preparation.
Morris, S. J. S. 2003 The evaporating meniscus in a channel. J. Fluid Mech. 494, 297317.
Nehari, Z. 1975 Conformal Mapping. Courier Corporation.
Ng, C.-O. & Wang, C. Y. 2010 Apparent slip arising from stokes shear flow over a bidimensional patterned surface. Microfluid. Nanofluid. 8 (3), 361371.
Nizkaya, T. V., Dubov, A. L., Mourran, A. & Vinogradova, O. I. 2016 Probing effective slippage on superhydrophobic stripes by atomic force microscopy. Soft Matt. 12, 69106917.
Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23 (3), 353372.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids 19 (4), 043603.
Schnitzer, O. 2016 Singular effective slip length for longitudinal flow over a dense bubble mattress. Phys. Rev. Fluids 1, 052101(R).
Schönecker, C., Baier, T. & Hardt, S. 2014 Influence of the enclosed fluid on the flow over a microstructured surface in the cassie state. J. Fluid Mech. 740, 168195.
Schönecker, C. & Hardt, S. 2013 Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid Mech. 717, 376394.
Teo, C. J. & Khoo, B. C. 2010 Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature. Microfluid. Nanofluid. 9 (2‐3), 499511.
Truesdell, R., Mammoli, A., Vorobieff, P., van Swol, F. & Brinker, C. J. 2006 Drag reduction on a patterned superhydrophobic surface. Phys. Rev. Lett. 97 (4), 044504.
Wexler, J. S., Jacobi, I. & Stone, H. A. 2015 Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett. 114 (16), 168301.
Yariv, E. & Sherwood, J. D. 2015 Application of Schwarz–Christoffel mapping to the analysis of conduction through a slot. Proc. R. Soc. Lond. A 471, 20150292.
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (12), 123601.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Slip length for longitudinal shear flow over an arbitrary-protrusion-angle bubble mattress: the small-solid-fraction singularity

  • Ory Schnitzer (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed