Skip to main content

Small-deformation theory for a surfactant-covered drop in linear flows


A small-deformation perturbation analysis is developed to study the effect of surfactant on drop dynamics in viscous flows. The surfactant is assumed to be insoluble in the bulk-phase fluids; the viscosity ratio and surfactant elasticity parameters are arbitrary. Under small-deformation conditions, the drop dynamics are described by a system of ordinary differential equations; the governing equations are given explicitly for the case of axisymmetric and two-dimensional imposed flows. Analytical results accurate to third order in the flow-strength parameter (capillary number) are derived (i) for the stationary drop shape and surfactant distribution in simple shear and axisymmetric straining flows, and (ii) for the rheology of a dilute emulsion in shear flow which include a shear-thinning viscosity and non-zero normal stresses. For drops with clean interfaces, the small-deformation theory presented here improves the results of Barthès-Biesel & Acrivos (J. Fluid Mech., vol. 61, 1973, p. 1). Boundary integral simulations are used to test our theory and explore large-deformation conditions.

Corresponding author
Email address for correspondence:
Hide All
Barthès-Biesel, D. & Acrivos, A. 1973 a Deformation and burst of a liquid droplet freely suspended in a linear shear field. J. Fluid Mech. 61, 121.
Barthès-Biesel, D. & Acrivos, A. 1973 b Rheology of suspensions and its relation to phenomenological theories for non-Newtonian fluid. Int. J. Multiphase Flow 1, 124.
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2004 Boundary integral method for deformable interfaces in the presence of insoluble surfactants. Lect. Notes Comput. Sci. 2907, 355362.
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Coll. Intl Sci. 298, 369394.
Bławzdziewicz, J., Vlahovska, P. & Loewenberg, M. 2000 Rheology of a dilute emulsion of surfactant-covered spherical drops. Physica A 276, 5080.
Booty, M. R. & Siegel, M. 2005 Steady deformation and tip-streaming of a slender bubble with surfactant in an extensional flow. J. Fluid Mech. 544, 243275.
Chaffey, C. & Brenner, H. 1967 A second-order theory for shear deformation of drops. J. Coll. Intl Sci. 24, 258269.
Cichocki, B., Felderhof, B. U. & Schmitz, R. 1988 Hydrodynamic interactions between two spherical particles. PhysicoChem. Hyd. 10, 383403.
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37, 601.
Edmonds, A. R. 1960 Angular Momentum in Quantum Mechanics. Princeton University Press.
Eggleton, C., Tsai, T. & Stebe, K. 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302.
Eggleton, C. D., Pawar, Y. P. & Stebe, K. J. 1998 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.
Feigl, K., Megias-Alguacil, D., Fischer, P. & Windhab, E. 2007 Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem. Engng Sci. 62, 32423258.
Fischer, P. & Erni, P. 2007 Emulsion drops in external flow fields – the role of liquid interfaces. Curr. Opin. Coll. Interface Sci. 12, 196205.
Flumerfelt, R. W. 1980 Effects of dynamic interfacial properties on drop deformation and orientation in shear and extensional flow fields. J. Colloid Interface Sci. 76, 330349.
Frankel, N. & Acrivos, A. 1970 The constitutive equation for a dilute emulsion. J. Fluid Mech. 44, 6578.
Greco, F. 2002 Second-order theory for the deformation of a Newtonian drop in a stationary flow field. Phys. Fluids 14, 946954.
Ha, J., Yoon, Y. & Leal, L. G. 2003 The effect of compatibilizer on the coalescence of two drops in flow. Phys. Fluids 15, 849867.
Hu, Y. & Lips, A. 2003 Estimating surfactant surface coverage and decomposing its effect on drop deformation. Phys. Rev. Lett. 91, 044501.
Hu, Y. T. 2008 Determination of interfacial tension between two immiscible polymers with and without surfactants at the interface. J. Coll. Intl Sci. 319, 287294.
Hu, Y. T., Pine, D. J. & Leal, L. G. 2000 Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids 12, 484489.
Hudson, S. D., Jamieson, A. M. & Burkhart, B. E. 2003 The effect of surfactant on the efficiency of shear-induced drop coalescence. J. Coll. Intl Sci. 265, 409421.
James, A. J. & Lowengrub, J. 2004 A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685722.
Jeon, H. K. & Macosko, C. W. 2003 Visualization of block copolymer distribution on a sheared drop. Polymer 44, 53815386.
Jones, M. N. 1985 Spherical Harmonics and Tensors for Classical Field Theory. Wiley.
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101.
Lee, J. & Pozrikidis, C. 2006 Effect of surfactants on the deformation of drops and bubbles in navier-stokes flow. Comput. Fluids 35, 4360.
Lequeux, F. 1998 Emulsion rheology. Curr. Opin. Colloid Interface Sci. 3, 408411.
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.
Milliken, W. J., Stone, H. A. & Leal, L. G. 1993 The effect of surfactant on transient motion of Newtonian drops. Phys. Fluids A 5, 6979.
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.
Muradoglu, M. & Tryggvason, G. 2008 A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 22382262.
Pawar, Y. & Stebe, K. J. 1996 Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8, 17381751.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C. 2001 Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam. J. Engng Math. 41, 237258.
Pozrikidis, C. 2004 A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop. J. Engng Math. 49, 163180.
Rallison, J. M. 1980 Note on the time-dependent deformation of a viscous drop which is almost spherical. J. Fluid Mech. 98, 625633.
Rallison, J. M. 1984 The deformation of small viscous drops and bubbles in shear flows. Ann. Rev. Fluid Mech. 16, 4566.
Rother, M. A. & Davis, R. H. 2004 Buoyancy driven coalescence of spherical drops covered with incompressible surfactant at arbitrary peclet number. J. Coll. Intl Sci. 270, 205220.
Rother, M. A., Zinchenko, A. Z. & Davis, R. H. 2006 Surfactant effects on buoyancy-driven viscous interactions of deformable drops. Coll. Surf. A 282, 5060.
Schowalter, W., Chaffey, C. & Brenner, H. 1968 Rheological behavior of a dilute emulsion. J. Coll. Intl Sci. 26, 152160.
Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles. Eur. Phys. J. B 8, 405415.
Stone, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111112.
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Ann. Rev. Fluid Mech. 26, 6599.
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.
Tucker, C. & Moldenaers, P. 2002 Microstructural evolution in polymer blends. Ann. Rev. Fluid Mech. 34, 177210.
Van Hemelrijck, E., Van Puyvelde, P., Velankar, S., Macosko, C. W. & Moldenaers, P. 2004 Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J. Rheol. 48, 143158.
Van Puyvelde, P., Velankar, S. & Moldenaers, P. 2001 Rheology and morphology of compatibilized polymer blend. Curr. Opin. Coll. Intl Sci. 6, 457463.
Varshalovich, D. A., Moskalev, A. N. & Kheronskii, V. K. 1988 Quantum Theory of Angular Momentum. World Scientfic.
Velankar, S., Van Pyuvede, P., Mewis, J. & Moldenaers, P. 2001 Effect of compatibilization on the breakup of polymeric drops in shear flow. J. Rheol. 45, 10071019.
Velankar, S., Van Puyvelde, P., Mewis, J. & Moldenaers, P. 2004 a Steady shear rheological properties of model compatibilized blends. J. Rheol. 48, 725744.
Velankar, S., Zhou, H., Jeon, H. K. & Macosko, C. 2004 b Cfd evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops. J. Coll. Intl Sci. 272, 172185.
Vlahovska, P. 2003 Dynamics of a surfactant-covered drop and the non-Newtonian rheology of emulsions. PhD thesis, Yale University (pdf file available by email: ).
Vlahovska, P., Bławzdziewicz, J. & Loewenberg, M. 2005 Deformation of a surfatant-covered drop in a linear flow. Phys. Fluids 17, Art. No. 103103.
Vlahovska, P. M. & Gracia, R. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75, 016313.
Wong, H., Rumschitzki, D. & Maldarelli, C. 1996 On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8, 32033204.
Xu, J. J., Li, Z. L., Lowengrub, J. & Zhao, H. K. 2006 A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 590616.
Yon, S. & Pozrikidis, C. 1998 A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27, 879902.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 93 *
Loading metrics...

Abstract views

Total abstract views: 185 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.