Skip to main content
    • Aa
    • Aa

Small-deformation theory for a surfactant-covered drop in linear flows


A small-deformation perturbation analysis is developed to study the effect of surfactant on drop dynamics in viscous flows. The surfactant is assumed to be insoluble in the bulk-phase fluids; the viscosity ratio and surfactant elasticity parameters are arbitrary. Under small-deformation conditions, the drop dynamics are described by a system of ordinary differential equations; the governing equations are given explicitly for the case of axisymmetric and two-dimensional imposed flows. Analytical results accurate to third order in the flow-strength parameter (capillary number) are derived (i) for the stationary drop shape and surfactant distribution in simple shear and axisymmetric straining flows, and (ii) for the rheology of a dilute emulsion in shear flow which include a shear-thinning viscosity and non-zero normal stresses. For drops with clean interfaces, the small-deformation theory presented here improves the results of Barthès-Biesel & Acrivos (J. Fluid Mech., vol. 61, 1973, p. 1). Boundary integral simulations are used to test our theory and explore large-deformation conditions.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Barthès-Biesel & A. Acrivos 1973 bRheology of suspensions and its relation to phenomenological theories for non-Newtonian fluid. Int. J. Multiphase Flow 1, 124.

I. B. Bazhlekov , P. D. Anderson & H. E. H. Meijer 2004 Boundary integral method for deformable interfaces in the presence of insoluble surfactants. Lect. Notes Comput. Sci. 2907, 355362.

I. B. Bazhlekov , P. D. Anderson & H. E. H. Meijer 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Coll. Intl Sci. 298, 369394.

J. Bławzdziewicz , P. Vlahovska & M. Loewenberg 2000 Rheology of a dilute emulsion of surfactant-covered spherical drops. Physica A 276, 5080.

C. Chaffey & H. Brenner 1967 A second-order theory for shear deformation of drops. J. Coll. Intl Sci. 24, 258269.

C. Eggleton , T. Tsai & K. Stebe 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302.

K. Feigl , D. Megias-Alguacil , P. Fischer & E. Windhab 2007 Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem. Engng Sci. 62, 32423258.

P. Fischer & P. Erni 2007 Emulsion drops in external flow fields – the role of liquid interfaces. Curr. Opin. Coll. Interface Sci. 12, 196205.

R. W. Flumerfelt 1980 Effects of dynamic interfacial properties on drop deformation and orientation in shear and extensional flow fields. J. Colloid Interface Sci. 76, 330349.

F. Greco 2002 Second-order theory for the deformation of a Newtonian drop in a stationary flow field. Phys. Fluids 14, 946954.

J. Ha , Y. Yoon & L. G. Leal 2003 The effect of compatibilizer on the coalescence of two drops in flow. Phys. Fluids 15, 849867.

Y. Hu & A. Lips 2003 Estimating surfactant surface coverage and decomposing its effect on drop deformation. Phys. Rev. Lett. 91, 044501.

Y. T. Hu 2008 Determination of interfacial tension between two immiscible polymers with and without surfactants at the interface. J. Coll. Intl Sci. 319, 287294.

Y. T. Hu , D. J. Pine & L. G. Leal 2000 Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids 12, 484489.

S. D. Hudson , A. M. Jamieson & B. E. Burkhart 2003 The effect of surfactant on the efficiency of shear-induced drop coalescence. J. Coll. Intl Sci. 265, 409421.

A. J. James & J. Lowengrub 2004 A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685722.

H. K. Jeon & C. W. Macosko 2003 Visualization of block copolymer distribution on a sheared drop. Polymer 44, 53815386.

S. Kim & S. J. Karrila 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.

V. V. Lebedev , K. S. Turitsyn & S. S. Vergeles 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101.

J. Lee & C. Pozrikidis 2006 Effect of surfactants on the deformation of drops and bubbles in navier-stokes flow. Comput. Fluids 35, 4360.

F. Lequeux 1998 Emulsion rheology. Curr. Opin. Colloid Interface Sci. 3, 408411.

X. Li & C. Pozrikidis 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.

W. J. Milliken , H. A. Stone & L. G. Leal 1993 The effect of surfactant on transient motion of Newtonian drops. Phys. Fluids A 5, 6979.

C. Misbah 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.

M. Muradoglu & G. Tryggvason 2008 A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 22382262.

Y. Pawar & K. J. Stebe 1996 Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8, 17381751.

C. Pozrikidis 2001 Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam. J. Engng Math. 41, 237258.

C. Pozrikidis 2004 A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop. J. Engng Math. 49, 163180.

J. M. Rallison 1984 The deformation of small viscous drops and bubbles in shear flows. Ann. Rev. Fluid Mech. 16, 4566.

M. A. Rother & R. H. Davis 2004 Buoyancy driven coalescence of spherical drops covered with incompressible surfactant at arbitrary peclet number. J. Coll. Intl Sci. 270, 205220.

W. Schowalter , C. Chaffey & H. Brenner 1968 Rheological behavior of a dilute emulsion. J. Coll. Intl Sci. 26, 152160.

U. Seifert 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles. Eur. Phys. J. B 8, 405415.

H. A. Stone 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111112.

H. A. Stone 1994 Dynamics of drop deformation and breakup in viscous fluids. Ann. Rev. Fluid Mech. 26, 6599.

G. I. Taylor 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.

C. Tucker & P. Moldenaers 2002 Microstructural evolution in polymer blends. Ann. Rev. Fluid Mech. 34, 177210.

E. Van Hemelrijck , P. Van Puyvelde , S. Velankar , C. W. Macosko & P. Moldenaers 2004 Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J. Rheol. 48, 143158.

P. Van Puyvelde , S. Velankar & P. Moldenaers 2001 Rheology and morphology of compatibilized polymer blend. Curr. Opin. Coll. Intl Sci. 6, 457463.

D. A. Varshalovich , A. N. Moskalev & V. K. Kheronskii 1988 Quantum Theory of Angular Momentum. World Scientfic.

S. Velankar , P. Van Pyuvede , J. Mewis & P. Moldenaers 2001 Effect of compatibilization on the breakup of polymeric drops in shear flow. J. Rheol. 45, 10071019.

S. Velankar , P. Van Puyvelde , J. Mewis & P. Moldenaers 2004 aSteady shear rheological properties of model compatibilized blends. J. Rheol. 48, 725744.

S. Velankar , H. Zhou , H. K. Jeon & C. Macosko 2004 bCfd evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops. J. Coll. Intl Sci. 272, 172185.

P. Vlahovska , J. Bławzdziewicz & M. Loewenberg 2005 Deformation of a surfatant-covered drop in a linear flow. Phys. Fluids 17, Art. No. 103103.

P. M. Vlahovska & R. Gracia 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75, 016313.

H. Wong , D. Rumschitzki & C. Maldarelli 1996 On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8, 32033204.

J. J. Xu , Z. L. Li , J. Lowengrub & H. K. Zhao 2006 A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 590616.

S. Yon & C. Pozrikidis 1998 A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27, 879902.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 64 *
Loading metrics...

Abstract views

Total abstract views: 98 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th June 2017. This data will be updated every 24 hours.