Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T21:04:19.644Z Has data issue: false hasContentIssue false

Some topological features of the entrainment process in a heated turbulent wake

Published online by Cambridge University Press:  21 April 2006

J. A. Ferré
Affiliation:
Departament d'Enginyeria Química i Bioquímica, Divisió VII, Universitat de Barcelona, 43005 Tarragona, Catalunya, Spain
Francesc Giralt
Affiliation:
Departament d'Enginyeria Química i Bioquímica, Divisió VII, Universitat de Barcelona, 43005 Tarragona, Catalunya, Spain

Abstract

The temperature signals measured in a fully turbulent, thermally contaminated wake behind a heated cylinder at x/D = 140, are analysed using a pattern-recognition procedure. The temperature patterns detected show that the wake flow is dominated by shear-aligned structures with a strong three-dimensional character. The temperature footprints have a limited extent in the spanwise and streamwise directions, while their dimension is of the order of the wake width in the vertical coordinate. The footprints are characterized by a steep temperature gradient at their back edge, which appears as a sharp hot-to-cold transition. The topological features inferred from the temperature signals suggest that the entrainment process is accomplished mainly by engulfing external fluid. The large-scale organized structures are interpreted as the temperature footprints of the double-rollers characterizing the large-eddy motion in far wakes. The analysis of present results within the context of previous studies about intermittency in heated wakes, brings forward the idea that the intermittent bulges are the emerging double rollers at the three-dimensional turbulent/non-turbulent interface.

Type
Research Article
Copyright
1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barsoum, M. L., Kawall, J. G. & Keffer, J. F., 1978 Phys. Fluids 21, 157161.
Beguier, C., Giralt, F. & Keffer, J. F., 1978 Proc. Intl Heat Trans. Conf. Toronto, vol 5, pp. 353358.
Browne, L. W. B., Antonia, A. A. & Bisset, D. K., 1986 Phys. Fluids 29, 36123617.
Fabris, G.: 1979 J. Fluid Mech. 94, 673709.
Fabris, G.: 1984 J. Fluid Mech. 140, 355372.
Ferré, J. A. & Giralt, F.1989 J. Fluid Mech. 198, 2764.
Grant, H. L.: 1958 J. Fluid Mech. 4, 149190.
Kawall, J. G. & Keffer, J. F., 1982 In Turbulent Shear Flows 3 (ed. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw). Springer.
LaRue, J. C. & Libby, P. A., 1974a Phys. Fluids 17, 873878.
LaRue, J. C. & Libby, P. A., 1974b Phys. Fluids 17, 19561967.
Mumford, J. C.: 1973 Some properties of the plane turbulent jet. PhD dissertation, University of Cambridge.
Mumford, J. C.: 1983 J. Fluid Mech. 137, 447456.
Thomas, R. M.: 1973 J. Fluid Mech. 57, 549582.
Townsend, A. A.: 1979 J. Fluid Mech. 95, 515537.
Wygnanski, I., Champagne, F. & Marasli, B., 1986 J. Fluid Mech. 168, 3171.