Skip to main content
×
Home
    • Aa
    • Aa

Sound generation in a mixing layer

  • TIM COLONIUS (a1), SANJIVA K. LELE (a2) and PARVIZ MOIN (a2)
Abstract

The sound generated by vortex pairing in a two-dimensional compressible mixing layer is investigated. Direct numerical simulations (DNS) of the Navier–Stokes equations are used to compute both the near-field region and a portion of the acoustic field. The acoustic analogy due to Lilley (1974) is also solved with acoustic sources determined from the near-field data of the DNS. It is shown that several commonly made simplifications to the acoustic sources can lead to erroneous predictions for the acoustic field. Predictions based on the quadrupole form of the source terms derived by Goldstein (1976a, 1984) are in excellent agreement with the acoustic field from the DNS. However, despite the low Mach number of the flow, the acoustic far field generated by the vortex pairings cannot be described by considering compact quadrupole sources. The acoustic sources have the form of modulated wave packets and the acoustic far field is described by a superdirective model (Crighton & Huerre 1990). The presence of flow–acoustic interactions in the computed source terms causes the acoustic field predicted by the acoustic analogy to be very sensitive to small changes in the description of the source.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 135 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.