Skip to main content
×
×
Home

Space–time dynamics of optimal wavepackets for streaks in a channel entrance flow

  • F. Alizard (a1) (a2), A. Cadiou (a1), L. Le Penven (a1), B. Di Pierro (a1) and M. Buffat (a1)...
Abstract

The laminar–turbulent transition of a plane channel entrance flow is revisited using global linear optimization analyses and direct numerical simulations. The investigated case corresponds to uniform upstream velocity conditions and a moderate value of Reynolds number so that the two-dimensional developing flow is linearly stable under the parallel flow assumption. However, the boundary layers in the entry zone are capable of supporting the development of streaks, which may experience secondary instability and evolve to turbulence. In this study, global optimal linear perturbations are computed and studied in the nonlinear regime for different values of streak amplitude and optimization time. These optimal perturbations take the form of wavepackets having either varicose or sinuous symmetry. It is shown that, for short optimization times, varicose wavepackets grow through a combination of Orr and lift-up effects, whereas for longer target times, both sinuous and varicose wavepackets exhibit an instability mechanism driven by the presence of inflection points in the streaky flow. In addition, while the optimal varicose modes obtained for short optimization times are localized near the inlet, where the base flow is strongly three-dimensional, when the target time is increased, the sinuous and varicose optimal modes are displaced farther downstream, in the nearly parallel streaky flow. Finally, the optimal wavepackets are found to lead to turbulence for sufficiently high initial amplitudes. It is noticed that the resulting turbulent flows have the same wall-shear stress, whether the wavepackets have been obtained for short or for long time optimization.

Copyright
Corresponding author
Email address for correspondence: frederic.alizard@lecnam.net
References
Hide All
Alamo, J. C. Del & Jimenez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 5, 4144.
Alizard, F. 2015 Linear stability of optimal streaks in the log-layer of turbulent channel flows. Phys. Fluids 27, 105103.
Alizard, F., Robinet, J.-C. & Filliard, G. 2015 Sensitivity analysis of optimal transient growth for turbulent boundary layers. Eur. J. Mech. (B/Fluids) 49, 373386.
Alizard, F., Robinet, J.-C. & Gloerfelt, X. 2012 A domain decomposition matrix-free method for global linear stability. Comput. Fluids 66, 6384.
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.
Asai, M. & Floryan, J. M. 2004 Certain aspects of channel entrance flow. Phys. Fluids 16, 11601163.
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57, 14351458.
Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.
Biau, D. 2008 Linear stability of channel entrance flow. Eur. J. Mech. (B/Fluids) 27, 579590.
Brandt, L. 2007 Numerical studies of the instability and breakdown of a boundary-layer low-speed streak. Eur. J. Mech. (B/Fluids) 26, 6482.
Brandt, L., Cossu, C., Chomaz, J.-M., Huerre, P. & Henningson, D. S. 2003 On the convectively unstable nature of optimal streaks in boundary layers. J. Fluid Mech. 485, 221242.
Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229261.
Brandt, L. & de Lange, H. C. 2008 Streak interactions and breakdown in boundary layer flows. Phys. Fluids 20, 024107.
Brandt, L. & Schlatter, P. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.
Buffat, M., Le Penven, L. & Cadiou, A. 2011 An efficient spectral method based on an orthogonal decomposition of the velocity for transition analysis in wall bounded flow. Comput. Fluids 42, 6272.
Buffat, M., Le Penven, L., Cadiou, A. & Montagnier, J. 2014 DNS of bypass transition in entrance channel flow induced by boundary layer interaction. Eur. J. Mech. (B/Fluids) 43, 113.
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A4, 16371650.
Chen, T. S. & Sparrow, E. M. 1967 Stability of the developing laminar flow in a parallel-plate channel. J. Fluid Mech. 30, 209224.
Cherubini, S., De Tullio, M. D., De Palma, P. & Pascazio, G. 2013 Transient growth in the flow past a three-dimensional smooth roughness element. J. Fluid Mech. 724, 642670.
Cherubini, S., Palma, P. D., Robinet, J. C. & Bottaro, A. 2010 Rapid path to transition via nonlinear optimal perturbations in a boundary-layer flow. Phys. Rev. E 82, 066302.
Cossu, C. & Brandt, L. 2004 On Tollmien–Schlichting-like waves in streaky boundary layers. Eur. J. Mech. (B/Fluids) 23, 815833.
Cossu, C., Brandt, L., Bagheri, S. & Henningson, D. S. 2011 Secondary threshold amplitudes for sinuous streak breakdown. Phys. Fluids 23, 074103.
Cossu, C., Chevalier, M. & Henningson, D. S. 2007 Optimal secondary energy growth in a plane channel flow. Phys. Fluids 19, 058107.
Darbandi, M. & Schneider, G. E. 1999 Numerical study of the flow behavior in the uniform velocity entry flow problem. Numer. Heat Transfer A 34, 479494.
Dixit, S. A. & Ramesh, O. N. 2010 Large-scale structures in turbulent and reverse-transitional sink flow boundary layers. J. Fluid Mech. 649, 233273.
Draad, A. A., Kuiken, G. D. C. & Nieuwstadt, F. T. M. 1998 Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267312.
Duguet, Y., Schlatter, P., Henningson, D. S. & Eckhardt, B. 2012 Self-sustained localized structures in a boundary-layer flow. Phys. Rev. Lett. 108, 044501.
Durbin, P. & Wu, X. 2007 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39, 107128.
Durst, F., Ray, S., Ünsal, B. & Bayoumi, O. A. 2005 The development lengths of laminar pipe and channel flows. Trans. ASME J. Fluids Engng 127, 11541160.
Eitel-Amor, G., Flores, O. & Schlatter, P. 2014 Hairpin vortices in turbulent boundary layers. J. Phys. 506, 012008.
Garg, V. K. & Gupta, S. C. 1981 Nonparallel effects on the stability of developing flow in a channel. Phys. Fluids 24, 1752.
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.
Hifdi, A., Touhami, M. O. & Naciri, J. K. 2004 Channel entrance flow and its linear stability. J. Stat. Mech. 2004 (06), P06003.
Hoepffner, J., Brandt, L. & Henningson, D. S. 2005 Transient growth on boundary layer streaks. J. Fluid Mech. 537, 91100.
John, M. O., Obrist, D. & Kleiser, L. 2016 Secondary instability and subcritical transition of the leading-edge boundary layer. J. Fluid Mech. 792, 682711.
Kapila, A. K., Ludford, G. S. S. & Olunloyo, V. O. S. 1972 Entry flow in a channel. Part 3. Inlet in a uniform stream. J. Fluid Mech. 57, 769784.
Landhal, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flow. J. Fluid Mech. 98, 243251.
Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2010 A study of boundary layer transition induced by freestream turbulence. J. Fluid Mech. 660, 114146.
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.
Monokrousos, A., Akervik, E., Brandt, L. & Henningson, D. S. 2010 Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181214.
Moser, R. D., Kim, J. & Mansour, N. N. 1998 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11, 943945.
Moser, R. D., Moin, P. & Leonard, A. 1983 A spectral numerical method for the Navier–Stokes equations with applications to Taylor–Couette flow. J. Comput. Phys. 52, 524544.
Nordstrom, J., Nordin, N. & Henningson, D. 1999 The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput. 20, 13651393.
Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Part II: a viscous liquid. Proc. R. Irish Acad. A 27, 937.
Passaggia, P. Y., Leweke, T. & Ehrenstein, U. 2012 Transverse instability and low-frequency flapping in incompressible separated boundary layer flows: an experimental study. J. Fluid Mech. 703, 363373.
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.
Sadri, R. M. & Floryan, J. M. 2002 Entry in a channel. Comput. Fluids 31, 133157.
Sayadi, T., Hamman, C. W. & Moin, P. 2013 Direct numerical simulation of complete h-type and k-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480509.
Schlatter, P. & Orlu, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.
Schmid, P. J. & Henningson, D. S. 1992 A new mechanism for rapid transition involving a pair of oblique waves. Phys. Fluids 4, 19861989.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.
Schmidt, O. T., Hosseini, S. M., Rist, U., Hanifi, A. & Henningson, D. S. 2015 Optimal wavepackets in streamwise corner flow. J. Fluid Mech. 766, 405435.
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1990 Spectral methods for the Navier–Stokes equations with one infinite and two periodic conditions. J. Comput. Phys. 96, 297324.
Sparrow, E. M. & Anderson, C. E. 1977 Effect of upstream flow processes on hydrodynamic development in a duct. Trans. ASME J. Fluids Engng 99, 556560.
Van Dyke, M. 1970 Entry flow in a channel. J. Fluid Mech. 44, 813823.
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.
Wilson, S. D. R. 1971 Entry flow in a channel. Part 2. J. Fluid Mech. 46, 787799.
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed