Skip to main content
×
×
Home

Sparse reduced-order modelling: sensor-based dynamics to full-state estimation

  • Jean-Christophe Loiseau (a1), Bernd R. Noack (a2) (a3) (a4) and Steven L. Brunton (a5)
Abstract

We propose a general dynamic reduced-order modelling framework for typical experimental data: time-resolved sensor data and optional non-time-resolved particle image velocimetry (PIV) snapshots. This framework can be decomposed into four building blocks. First, the sensor signals are lifted to a dynamic feature space without false neighbours. Second, we identify a sparse human-interpretable nonlinear dynamical system for the feature state based on the sparse identification of nonlinear dynamics (SINDy). Third, if PIV snapshots are available, a local linear mapping from the feature state to the velocity field is performed to reconstruct the full state of the system. Fourth, a generalized feature-based modal decomposition identifies coherent structures that are most dynamically correlated with the linear and nonlinear interaction terms in the sparse model, adding interpretability. Steps 1 and 2 define a black-box model. Optional steps 3 and 4 lift the black-box dynamics to a grey-box model in terms of the identified coherent structures, if non-time-resolved full-state data are available. This grey-box modelling strategy is successfully applied to the transient and post-transient laminar cylinder wake, and compares favourably with a proper orthogonal decomposition model. We foresee numerous applications of this highly flexible modelling strategy, including estimation, prediction and control. Moreover, the feature space may be based on intrinsic coordinates, which are unaffected by a key challenge of modal expansion: the slow change of low-dimensional coherent structures with changing geometry and varying parameters.

Copyright
Corresponding author
Email address for correspondence: loiseau.jc@gmail.com
References
Hide All
Adrian, R. J. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.
Akaike, H. 1974 A new look at the statistical model identification. IEEE Trans. Autom. Control 19 (6), 716723.
Arbabi, H. & Mezić, I.2016 Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. arXiv:1611.06664.
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.
Babaee, H. & Sapsis, T. P. 2016 A minimization principle for the description of modes associated with finite-time instabilities. Phil. Trans. R. Soc. Lond. 472, 2186.
Bagheri, S. 2013 Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726, 596623.
Balajewicz, M., Dowell, E. H. & Noack, B. R. 2013 Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285308.
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Barnett, T. P. & Hasselmann, K. 1979 Techniques of linear prediction, with application to oceanic and atmospheric fields in the tropical Pacific. Rev. Geophys. 17, 949968.
Berkooz, G., Holmes, P. J. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.
Billings, S. A. 2013 Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. John Wiley & Sons.
Bongard, J. & Lipson, H. 2007 Automated reverse engineering of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 104 (24), 99439948.
Bonnet, J.-P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp. Fluids 17 (5), 307314.
Bourguet, R., Braza, M. & Dervieux, A. 2011 Reduced-order modeling of transonic flows around an airfoil submitted to small deformations. J. Comput. Phys. 230, 159184.
Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E. & Kutz, J. N. 2017 Chaos as an intermittently forced linear system. Nature Commun. 8 (19), 19.
Brunton, S. L., Brunton, B. W., Proctor, J. L. & Kutz, J. N 2016a Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11 (2), e0150171.
Brunton, S. L., Dawson, S. T. & Rowley, C. W. 2014 State-space model identification and feedback control of unsteady aerodynamic forces. J. Fluids Struct. 50, 253270.
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016b Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (15), 39323937.
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016c Sparse identification of nonlinear dynamics with control (SINDYc). IFAC NOLCOS 49 (18), 710715.
Brunton, S. L., Rowley, C. W. & Williams, D. R. 2013 Reduced-order unsteady aerodynamic models at low Reynolds numbers. J. Fluid Mech. 724, 203233.
Candès, E. J. 2006 Compressive sensing. In Proceedings of the International Congress of Mathematics, Madrid, Spain, vol. 3, pp. 14331452. ICM.
Carlberg, K., Barone, M. & Antil, H. 2017 Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. J. Comput. Phys. 330, 693734.
Carlberg, K., Tuminaro, R. & Boggs, P. 2015 Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37 (2), B153B184.
Chartrand, R. 2011 Numerical differentiation of noisy, nonsmooth data. ISRN Appl. Math. 2011, 164564.
Colebrook, J. M. 1978 Continuous plankton records: Zooplankton and environment, Northeast Atlantic and North Sea. Oceanol. Acta 1, 923.
Cordier, L., Noack, B. R., Daviller, G., Delvile, J., Lehnasch, G., Tissot, G., Balajewicz, M. & Niven, R. K. 2013 Control-oriented model identification strategy. Exp. Fluids 54, 1580.
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Phys. Fluids A 3, 23372354.
Donoho, D. L. 2006 Compressed sensing. IEEE Trans. Inf. Theory 52 (4), 12891306.
Drmac, Z. & Gugercin, S. 2016 A new selection operator for the discrete empirical interpolation method – improved a priori error bound and extensions. SIAM J. Sci. Comput. 38 (2), A631A648.
Duriez, T., Brunton, S. L. & Noack, B. R. 2016 Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer.
Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D. S. 2014 Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66 (6), 060801.
Fischer, P. F., Lottes, J. W. & Kerkemeir, S. G.2008 Nek5000 Web pages. http://nek5000.mcs.anl.gov.
Galletti, G., Bruneau, C. H., Zannetti, L. & Iollo, A. 2004 Low-order modelling of laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503, 161170.
Ghil, M., Allen, R. M., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F. & Yiou, P. 2002 Advanced spectral methods for climatic time series. Rev. Geophys. 40, 3.13.41.
Glaz, B., Liu, L. & Friedmann, P. P. 2010 Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework. AIAA J. 48 (10), 24182429.
Graham, W. R., Peraire, J. & Tang, K. Y. 1999 Optimal control of vortex shedding usind low-order models. Part I – Open-loop model development. Intl J. Numer. Meth. Engng 44, 945972.
Hemati, M. S., Dawson, S. T. & Rowley, C. W. 2016 Parameter-varying aerodynamics models for aggressive pitching-response prediction. AIAA J. 55 (3), 683701.
Holmes, P. J., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.
Hosseini, Z., Noack, B. R. & Martinuzzi, R. J. 2016 Modal energy flow analysis of a highly modulated wake behind a wall-mounted pyramid. J. Fluid Mech. 798, 774786.
Iñigo, J. G., Sipp, D. & Schmid, P. J 2014 A dynamic observer to capture and control perturbation energy in noise amplifiers. J. Fluid Mech. 758, 728753.
Juang, J.-N. & Pappa, R. S. 1985 An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8 (5), 620627.
Kaiser, E., Kutz, J. N. & Brunton, S. L.2017 Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. arXiv:1711.05501.
Kaiser, E., Noack, B. R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller, G., Osth, J., Krajnovic, S. & Niven, R. K. 2014 Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365414.
Kantz, H. & Schreiber, T. 2004 Nonlinear Time Series Analysis. Cambridge University Press.
Krizhevsky, A., Sutskever, I. & Hinton, G. E. 2012 Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (ed. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.), vol. 25, pp. 10971105. Curran Associates.
Kutz, J. N. 2017 Deep learning in fluid dynamics. J. Fluid Mech. 814, 14.
Kutz, J. N., Brunton, S. L., Brunton, B. W. & Proctor, J. L. 2016 Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM.
Lee, C., Kim, J., Babcock, D. & Goodman, R. 1997 Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9 (6), 17401747.
Ling, J., Kurzawski, A. & Templeton, J. 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155166.
Loiseau, J.-Ch. & Brunton, S. L. 2018 Constrained sparse Galerkin regression. J. Fluid Mech. 838, 4267.
Mangan, N. M., Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016 Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2 (1), 5263.
Mangan, N. M., Kutz, J. N., Brunton, S. L. & Proctor, J. L. 2017 Model selection for dynamical systems via sparse regression and information criteria. Proc. R. Soc. Lond. A 473 (2204), 116.
Manohar, K., Brunton, B. W., Kutz, J. N. & Brunton, S. L.Data-driven sparse sensor placement. arXiv:1701.07569.
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113 (8), 084501.
McConaghy, T. 2011 Ffx: fast, scalable, deterministic symbolic regression technology. In Genetic Programming Theory and Practice IX, pp. 235260. Springer.
Mezić, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41 (1–3), 309325.
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357378.
Milano, M. & Koumoutsakos, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182 (1), 126.
Murray, N. E. & Ukeiley, L. S. 2007 Modified quadratic stochastic estimation of resonating subsonic cavity flow. J. Turbul. (8), N53.
Nair, A. G. & Taira, K. 2015 Network-theoretic approach to sparsified discrete vortex dynamics. J. Fluid Mech. 768, 549571.
Noack, B. R. 2016 From snapshots to modal expansions – bridging low residuals and pure frequencies. J. Fluid Mech. 802, 14.
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R., Morzynski, M. & Tadmor, G. 2011 Reduced-Order Modelling for Flow Control. Springer.
Östh, J., Krajnović, S., Noack, B. R., Barros, D. & Borée, J. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body. J. Fluid Mech. 747, 518544.
Rediniotis, O. K., Ko, J. & Kurdila, A. J. 2002 Reduced order nonlinear Navier–Stokes models for synthetic jets. Trans. ASME J. Fluids Engng 124 (2), 433443.
Rempfer, D. 2000 On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14, 7588.
Rempfer, D. & Fasel, F. H. 1994 Dynamics of three-dimensional coherent structures in a flat-plate boundary-layer. J. Fluid Mech. 275, 257283.
Rowley, C. W. & Dawson, S. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49 (1), 387417.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.
Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2017 Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614.
Schaeffer, H. 2017 Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. Lond. A 473, 20160446.
Schaeffer, H. & McCalla, S. G. 2017 Sparse model selection via integral terms. Phys. Rev. E 96 (2), 023302.
Schlegel, M. & Noack, B. R. 2015 On long-term boundedness of Galerkin models. J. Fluid Mech. 765, 325352.
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
Schmidt, M. & Lipson, H. 2009 Distilling free-form natural laws from experimental data. Science 324 (5923), 8185.
Schumm, M., Eberhard, B. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.
Schwarz, G. others 1978 Estimating the dimension of a model. Ann. Stat. 6 (2), 461464.
Semeraro, O., Lusseyran, F., Pastur, L. & Jordan, P. 2017 Qualitative dynamics of wavepackets in turbulent jets. Phys. Rev. Fluids 2, 094605.
Sengupta, T. K., Haider, S. I., Parvathi, M. K. & Pallavi, G. 2015 Enstrophy-based proper orthogonal decomposition for reduced-order modeling of flow past a cylinder. Phys. Rev. E 91 (4), 043303.
Sipp, D. & Schmid, P. J. 2016 Linear closed-loop control of fluid instabilities and noise-induced perturbations: A review of approaches and tools. Appl. Mech. Rev. 68 (2), 020801.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q. Appl. Maths 45 (3), 561571.
Tadmor, G., Lehmann, O., Noack, B. R., Cordier, L., Delville, J., Bonnet, J.-P. & Morzyński, M. 2011 Reduced order models for closed-loop wake control. Phil. Trans. R. Soc. Lond. A 369 (1940), 15131524.
Tadmor, G., Lehmann, O., Noack, B. R. & Morzyński, M. 2010 Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22 (3), 034102.
Takens, F. 1981 Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick 1980. pp. 366381. Springer.
Tibshirani, R. 1996 Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267288.
Tu, J. H., Griffin, J., Hart, A., Rowley, C. W., Cattafesta, L. N. & Ukeiley, L. S. 2013 Integration of non-time-resolved piv and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp. Fluids 54 (2), 1429.
Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. & Kutz, J. N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391421.
Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Bonnet, J. P. & Glauser, M. 2001 Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model. J. Fluid Mech. 441, 61108.
Wang, W. X., Yang, R., Lai, Y. C., Kovanis, V. & Grebogi, C. 2011 Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101, 1–4.
Weare, B. C. & Nasstrom, J. N. 1982 Examples of extended empirical orthogonal function analyses. Mon. Weath. Rev. 110, 784812.
Wei, M. & Rowley, C. W. 2009 Low-dimensional models of a temporally evolving free shear layer. J. Fluid Mech. 618, 113134.
Wiener, N. 1948 Cybernetics or Control and Communication in the Animal and the Machine, 1st edn. MIT Press.
Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. 2015 A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25 (6), 13071346.
Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Maths 21 (2), 155165.
Zhang, H.-Q., Fey, U., Noack, B. R., König, M. & Eckelmann, H. 1995 On the transition of the cylinder wake. Phys. Fluids 7 (4), 779794.
Zhang, W., Wang, B., Ye, Z. & Quan, J. 2012 Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models. AIAA J. 50 (5), 10191028.
Zhang, Z. J. & Duraisamy, K. 2015 Machine learning methods for data-driven turbulence modeling. In 22nd AIAA Computational Fluid Dynamics Conference, p. 2460. AIAA.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed