Skip to main content Accessibility help
×
Home

Spatial organisation of velocity structures for large passive scalar gradients

  • Angeliki Laskari (a1), T. Saxton-Fox (a2) and B. J. McKeon (a1)

Abstract

Velocity structures associated with large streamwise density gradients in an incompressible turbulent boundary layer (with air as the working fluid, $Pr=0.71$ ) are analysed experimentally using planar image velocimetry and aero-optic measurements. The resulting flow topologies for the velocity fluctuations associated with large negative and positive density gradients are in excellent agreement with results for coolings and heatings in time, respectively (Antonia & Fulachier, J. Fluid Mech., vol. 198, 1989, pp. 429–451). The current results are complimentary to those from Saxton-Fox et al. (AIAA J., vol. 57 (7), 2019, pp. 2828–2839), on the signature of the vertical velocity structures associated with large density gradients. In the present work, these structures are shown to exhibit a sign change, consistent with the scalar gradient, and are localised in the wall-normal direction with an average height of approximately $0.1\unicode[STIX]{x1D6FF}$ , almost constant for increasing distance from the wall. The corresponding small-scale streamwise fluctuations also exhibit a consistent sign change, which is found to originate, on average, from upstream leaning structures. The emerging picture for the velocity field is then that of a multiscale phenomenon, where small-scale structures, responsible for large optical aberrations, are superimposed on the back of large-scale bulge-like structures that are known to populate the outer layers. The proposed conceptual model is consistent with early ideas of ‘typical’ eddies (Falco, Phys. Fluids, vol. 20 (10), 1977, pp. S124–S132), the hairpin vortex model and associated shear layers (Adrian et al., J. Fluid Mech., vol. 422, 2000, pp.1–54), as well as with notions of multiscale velocity organisation in shear layers (Klewicki & Hirschi, Phys. Fluids, vol. 16 (11), 2004, pp. 4163–4176; Saxton-Fox et al. 2019), and it provides new insight into the geometry of the small-scale velocity structures.

Copyright

Corresponding author

Email address for correspondence: alaska@caltech.edu

References

Hide All
Abe, H., Antonia, R. A. & Kawamura, H. 2009 Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow. J. Fluid Mech. 627, 132.
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Antonia, R. A., Abe, H. & Kawamura, H. 2009 Analogy between velocity and scalar fields in a turbulent channel flow. J. Fluid Mech. 628, 241268.
Antonia, R. A., Chambers, A. J., Friehe, C. A. & Van Atta, C. W. 1979 Temperature ramps in the atmospheric surface layer. J. Atmos. Sci. 36 (1), 99108.
Antonia, R. A. & Fulachier, L. 1989 Topology of a turbulent boundary layer with and without wall suction. J. Fluid Mech. 198, 429451.
Antonia, R. A., Fulachier, L., Krishnamoorthy, L. V., Benabid, T. & Anselmet, F. 1988a Influence of wall suction on the organized motion in a turbulent boundary layer. J. Fluid Mech. 190, 217240.
Antonia, R. A., Krishnamoorthy, L. V. & Fulachier, L. 1988b Correlation between the longitudinal velocity fluctuation and temperature fluctuation in the near-wall region of a turbulent boundary layer. Intl J. Heat Mass Transfer 31 (4), 723730.
Antonia, R. A., Rajagopalan, S., Subramanian, C. S. & Chambers, A. J. 1982 Reynolds-number dependence of the structure of a turbulent boundary layer. J. Fluid Mech. 121, 123140.
Antonia, R. A. & Van Atta, C. W. 1978 Structure functions of temperature fluctuations in turbulent shear flows. J. Fluid Mech. 84 (3), 561580.
Antonia, R. A. & Van Atta, C. W. 1979 Skewness of spatial derivatives of temperature in a turbulent boundary layer. Phys. Fluids 22 (12), 24302431.
Baars, W. J., Hutchins, N. & Marusic, I. 2017 Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160077.
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. Math. Phys. Engng Sci. 365 (1852), 665681.
Bisset, D. K., Antonia, R. A. & Raupach, M. R. 1991 Topology and transport properties of large scale organized motion in a slightly heated rough wall boundary layer. Phys. Fluids A 3 (9), 22202228.
Chen, C.-H. P. & Blackwelder, R. F. 1978 Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89, 131.
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.
De Graaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.
Falco, R. E. 1977 Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 20 (10), S124S132.
Fulachier, L. & Dumas, R. 1976 Spectral analogy between temperature and velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 77 (2), 257277.
Gibson, C. H., Friehe, C. A. & McConnell, S. O. 1977 Structure of sheared turbulent fields. Phys. Fluids 20 (10), S156S167.
Gladstone, J. H. & Dale, T. P. 1862 Researches on the refraction, dispersion, and sensitiveness of liquids. Proc. R. Soc. Lond. 12, 448453.
Gordeyev, S., Cress, J. A., Smith, A. E. & Jumper, E. J. 2015 Aero-optical measurements in a subsonic, turbulent boundary layer with non-adiabatic walls. Phys. Fluids 27 (4), 045110.
Gordeyev, S., Hayden, T. E. & Jumper, E. J. 2007 Aero-optical and flow measurements over a flat-windowed turret. AIAA J. 45 (2), 347357.
Gordeyev, S., Jumper, E. J., Ng, T. T. & Cain, A. B.2003 Aero-optical characteristics of compressible, subsonic turbulent boundary layers. AIAA Paper 2003-3606.
Gordeyev, S. & Smith, A. E.2016 Studies of the large-scale structure in turbulent boundary layers using simultaneous velocity-wavefront measurements. AIAA Paper 2016-3804.
Gordeyev, S., Smith, A. E., Cress, J. A. & Jumper, E. J. 2014 Experimental studies of aero-optical properties of subsonic turbulent boundary layers. J. Fluid Mech. 740, 214253.
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.
Jumper, E. J. & Gordeyev, S. 2017 Physics and measurement of aero-optical effects: past and present. Annu. Rev. Fluid Mech. 49 (1), 419441.
Kim, J. & Moin, P. 1989 Transport of passive scalars in a turbulent channel flow. In Turbulent Shear Flows 6, pp. 8596. Springer.
Klewicki, J. C. & Hirschi, C. R. 2004 Flow field properties local to near-wall shear layers in a low Reynolds number turbulent boundary layer. Phys. Fluids 16 (11), 41634176.
Li, Q., Schlatter, P., Brandt, L. & Henningson, D. S. 2009 DNS of a spatially developing turbulent boundary layer with passive scalar transport. Intl J. Heat Fluid Flow 30 (5), 916929.
Lozano-Duran, A., Flores, O. & Jimenez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.
Malley, M. M., Sutton, G. W. & Kincheloe, N. 1992 Beam-jitter measurements of turbulent aero-optical path differences. Appl. Opt. 31, 44404443.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.
Mestayer, P. G., Gibson, C. H., Coantic, M. F. & Patel, A. S. 1976 Local anisotropy in heated and cooled turbulent boundary layers. Phys. Fluids 19 (9), 12791287.
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. In Mechanique de la Turbulence (ed. Favre, A.), pp. 367380. CNRS.
Saxton-Fox, T.2018 Coherent structures, their interactions, and their effects on passive scalar transport and aero-optic distortion in a turbulent boundary layer. PhD thesis, California Institute of Technology, Pasadena, CA.
Saxton-Fox, T. & McKeon, B. J. 2017 Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J. Fluid Mech. 826, R6.
Saxton-Fox, T., McKeon, B. J. & Gordeyev, S. 2019 Effect of coherent structures on aero-optic distortion in a turbulent boundary layer. AIAA J. 57 (7), 28282839.
Saxton-Fox, T., McKeon, B. J., Gordeyev, S. & Smith, A. E. 2015 Aero-optical distortion as a marker of turbulent structure. In 11th International Symposium on Particle Image Velocimetry, Santa Barbara, CA.
de Silva, C. M., Kevin, K., Baidya, R., Hutchins, N. & Marusic, I. 2018 Large coherence of spanwise velocity in turbulent boundary layers. J. Fluid Mech. 847, 161185.
de Silva, C. M., Philip, J., Hutchins, N. & Marusic, I. 2017 Interfaces of uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 820, 451478.
Smith, A. E., Gordeyev, S., Saxton-Fox, T. & McKeon, B. J.2014 Subsonic boundary-layer wavefront spectra for a range of Reynolds numbers. AIAA Paper 2014-2491.
Smits, A. J. & Dussuage, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer.
Spalding, D. B. 1961 A single formula for the law of the wall. J. Appl. Mech. 28 (3), 455458.
Sreenivasan, K. R. 2018 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116 (37), 1817518183.
Sreenivasan, K. R. & Antonia, R. A. 1977 Skewness of temperature derivatives in turbulent shear flows. Phys. Fluids 20 (12), 19861988.
Subramanian, C. S., Rajagopalan, S., Antonia, R. A. & Chambers, A. J. 1982 Comparison of conditional sampling and averaging techniques in a turbulent boundary layer. J. Fluid Mech. 123, 335362.
Theodorsen, T. 1952 Mechanism of turbulence. In Proceedings of the Midwestern Conference on Fluid Mechanics, Ohio State University, Columbus, OH.
Vanderwel, C. & Tavoularis, S. 2016 Scalar dispersion by coherent structures in uniformly sheared flow generated in a water tunnel. J. Turbul. 17 (7), 633650.
Wang, K. & Wang, M. 2012 Aero-optics of subsonic turbulent boundary layers. J. Fluid Mech. 696, 122151.
Wang, M., Mani, A. & Gordeyev, S. 2012 Physics and computation of aero-optics. Annu. Rev. Fluid Mech. 44 (1), 299321.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Spatial organisation of velocity structures for large passive scalar gradients

  • Angeliki Laskari (a1), T. Saxton-Fox (a2) and B. J. McKeon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed