Skip to main content
×
Home
    • Aa
    • Aa

Spatial organization of large- and very-large-scale motions in a turbulent channel flow

  • Jin Lee (a1), Jae Hwa Lee (a1), Jung-Il Choi (a2) and Hyung Jin Sung (a1)
Abstract
Abstract

Direct numerical simulations were carried out to investigate the spatial features of large- and very-large-scale motions (LSMs and VLSMs) in a turbulent channel flow ( $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau }=930$ ). A streak detection method based on the streamwise velocity fluctuations was used to individually trace the cores of LSMs and VLSMs. We found that both the LSM and VLSM populations were large. Several of the wall-attached LSMs stretched toward the outer regions of the channel. The VLSMs consisted of inclined outer LSMs and near-wall streaks. The number of outer LSMs increased linearly with the streamwise length of the VLSMs. The temporal features of the low-speed streaks in the outer region revealed that growing and merging events dominated the large-scale (1– $3\delta $ ) structures. The VLSMs $({>}3\delta )$ were primarily created by merging events, and the statistical analysis of these events supported that the merging of large-scale upstream structures contributed to the formation of VLSMs. Because the local convection velocity is proportional to the streamwise velocity fluctuations, the streamwise-aligned structures of the positive- and negative- $u$ patches suggested a primary mechanism underlying the merging events. The alignment of the positive- and negative- $u$ structures may be an essential prerequisite for the formation of VLSMs.

Copyright
Corresponding author
Email address for correspondence: hjsung@kaist.ac.kr
References
Hide All
R. J. Adrian , C. D. Meinhart  & C. D. Tomkins 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.

B. J. Balakumar  & R. J. Adrian 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365, 665681.

J. R. Baltzer , R. J. Adrian  & X. Wu 2013 Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech. 720, 236279.

M. H. Buschmann  & M. Gad-el-Hak 2010 Normal and cross-flow Reynolds stresses: differences between confined and semi-confined flows. Exp. Fluids 49, 213223.

K. T. Christensen  & R. J. Adrian 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.

D. Chung  & B. J. McKeon 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.

J. C. del Álamo , J. Jiménez , P. Zandonade  & R. D. Moser 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.

J. C. del Álamo , J. Jiménez , P. Zandonade  & R. D. Moser 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.

D. J. C. Dennis  & T. B. Nickels 2008 On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.

D. J. C. Dennis  & T. B. Nickels 2011a Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.

D. J. C. Dennis  & T. B. Nickels 2011b Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.

A. Duggleby , K. S. Ball  & M. Schwaenen 2009 Structure and dynamics of low Reynolds number turbulent pipe flow. Phil. Trans. R. Soc. A 367, 473488.

G. E. Elsinga , C. Poelma , A. Schröder , R. Geisler , F. Scarano  & J. Westerweel 2012 Tracking of vortices in a turbulent boundary layer. J. Fluid Mech. 697, 273295.

B. Ganapathisubramani , E. K. Longmire  & I. Marusic 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.

M. Guala , S. E. Hommema  & R. J. Adrian 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.

L. H. O. Hellström , A. Sinha  & A. J. Smits 2011 Visualizing the very-large-scale motions in turbulent pipe flow. Phys. Fluids 23, 011703.

S. Hoyas  & J. Jiménez 2006 Scaling of the velocity fluctuations in turbulent channels up to $\mathit{Re}_{tau}=2003$. Phys. Fluids 18, 011702.

M. Hultmark , M. Vallikivi , S. C. C. Bailey  & A. J. Smits 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108, 094501.

N. Hutchins  & I. Marusic 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.

J. Jeong  & F. Hussain 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.

J. Kim 2012 Progress in pipe and channel flow turbulence, 1961–2011. J. Turbul. 13 (45), 119.

K. C. Kim  & R. J. Adrian 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.

K. Kim , S. J. Baek  & H. J. Sung 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38, 125138.

J. Kim  & F. Hussain 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids 5, 695706.

J. Lee , S. Y. Jung , H. J. Sung  & T. A. Zaki 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196225.

J.-H. Lee  & H. J. Sung 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.

J. H. Lee  & H. J. Sung 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.

J. H. Lee  & H. J. Sung 2013 Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys. Fluids 25, 045103.

I. Marusic , R. Mathis  & N. Hutchins 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31, 418428.

R. Mathis , N. Hutchins  & I. Marusic 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.

B. J. McKeon  & A. S. Sharma 2010 A critical layer model for turbulent pipe flow. J. Fluid Mech. 658, 336382.

J. P. Monty , J. A. Stewart , R. C. Williams  & M. S. Chong 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.

J. F. Morrison , B. J. McKeon , W. Jiang  & A. J. Smits 2004 Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99131.

K. P. Nolan  & T. A. Zaki 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.

S. B. Pope 2000 Turbulent Flows. Cambridge University Press.

P. Schlatter , Q. Li , G. Brethouwer , A. V. Johansson  & D. S. Henningson 2010 Simulations of spatially evolving turbulent boundary layers up to $\mathit{Re}_{\theta }=4300$. Intl J. Heat Fluid Flow 31, 251261.

A. S. Sharma  & B. J. McKeon 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.

M. P. Simens , J. Jiménez , S. Hoyas  & Y. Mizuno 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228, 42184231.

A. J. Smits , B. J. McKeon  & I. Marusic 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.

C. D. Tomkins  & R. J. Adrian 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.

M. Vallikivi , M. Hultmark , S. C. C. Bailey  & A. J. Smits 2011 Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp. Fluids 51 (6), 15211527.

J. Zhou , R. J. Adrian , S. Balachandar  & T. M. Kendall 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movie

Lee et al. supplementary movie
Streak detection

 Video (10.0 MB)
10.0 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 164 *
Loading metrics...

Abstract views

Total abstract views: 378 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.