Skip to main content Accessibility help

Spectral proper orthogonal decomposition

  • Moritz Sieber (a1), C. Oliver Paschereit (a1) and Kilian Oberleithner (a1)


The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency-ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods are not suitable when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these ‘rigid’ approaches, we propose a new method termed spectral proper orthogonal decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically optimal POD to the spectrally pure Fourier decomposition by changing a single parameter. In this article, SPOD is motivated from phenomenological considerations of the POD autocorrelation matrix and justified from dynamical systems theory. The new method is further applied to three sets of PIV measurements of flows from very different engineering problems. We consider the flow of a swirl-stabilized combustor, the wake of an airfoil with a Gurney flap and the flow field of the sweeping jet behind a fluidic oscillator. For these examples, the commonly used methods fail to assign the relevant coherent structures to single modes. The SPOD, however, achieves a proper separation of spatially and temporally coherent structures, which are either hidden in stochastic turbulent fluctuations or spread over a wide frequency range. The SPOD requires only one additional parameter, which can be estimated from the basic time scales of the flow. In spite of all these benefits, the algorithmic complexity and computational cost of the SPOD are only marginally greater than those of the snapshot POD.


Corresponding author

Email address for correspondence:


Hide All
Adrian, R. J. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.
Bach, A. B., Berg, R., Pechlivanoglou, G., Nayeri, C. & Paschereit, C. O. 2015a Experimental investigation of the aerodynamic lift response of an active finite gurney flap. In 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech. American Institute of Aeronautics and Astronautics.
Bach, A. B., Lennie, M., Pechlivanoglou, G., Nayeri, C. N. & Paschereit, C. O. 2014 Finite micro-tab system for load control on a wind turbine. J. Phys.: Conf. Ser. 524, 012082.
Bach, A. B., Pechlivanoglou, G., Nayeri, C. & Paschereit, C. O. 2015b Wake vortex field of an airfoil equipped with an active finite Gurney flap. In 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech. American Institute of Aeronautics and Astronautics.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Boree, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35 (2), 188192.
Bourgeois, J. A., Noack, B. R. & Martinuzzi, R. J. 2013 Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316350.
Durgesh, V. & Naughton, J. W. 2010 Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near wake flow. Exp. Fluids 49 (3), 571583.
Gray, R. M. 2005 Toeplitz and circulant matrices: a review. Foundations Trends Commun. Inform. Theory 2 (3), 155239.
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.
Hosseini, Z., Martinuzzi, R. J. & Noack, B. R. 2015 Sensor-based estimation of the velocity in the wake of a low-aspect-ratio pyramid. Exp. Fluids 56 (1), 116.
Huang, H. T., Fiedler, H. E. & Wang, J. J. 1993 Limitation and improvement of PIV: part II: particle image distortion, a novel technique. Exp. Fluids 15 (4–5), 263273.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C. & Liu, H. H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454 (1971), 903995.
Lasagna, D., Orazi, M. & Iuso, G. 2013 Multi-time delay, multi-point linear stochastic estimation of a cavity shear layer velocity from wall-pressure measurements. Phys. Fluids 25 (1), 017101.
Luchtenburg, D. M., Günther, B., Noack, B. R., King, R. & Tadmor, G. 2009 A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J. Fluid Mech. 623, 283316.
Lumley, J. L. 1970 Stochastic Tools in Turbulence, Applied Mathematics and Mechanics, vol. 12. Academic Press.
Oberleithner, K., Rukes, L. & Soria, J. 2014 Mean flow stability analysis of oscillating jet experiments. J. Fluid Mech. 757, 132.
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.
Oberleithner, K., Stöhr, M., Seong, H. I., Arndt, C. M. & Steinberg, A. M. 2015 Formation and flame-induced supression of the precessing vortex core in a swirl combustor: experiments and linear stability analysis. Combust. Flame 162 (8), 31003114.
Ostermann, F., Woszidlo, R., Gaertlein, S., Nayeri, C. & Paschereit, C. O. 2015a Phase-averaging methods for the natural flowfield of a fluidic oscillator. AIAA J. 53 (8), 23592368.
Ostermann, F., Woszidlo, R., Nayeri, C. & Paschereit, C. O. 2015b Experimental comparison between the flow field of two common fluidic oscillator designs. In 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech. American Institute of Aeronautics and Astronautics.
Raffel, M., Kompenhans, J., Wereley, S. T. & Willert, C. E. 2007 Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer.
Raiola, M., Discetti, S. & Ianiro, A. 2015 On PIV random error minimization with optimal POD-based low-order reconstruction. Exp. Fluids 56 (4), 115.
Reichel, T. G., Terhaar, S. & Paschereit, O. 2015 Increasing flashback resistance in lean premixed swirl-stabilized hydrogen combustion by axial air injection. Trans. ASME J. Engng Gas Turbines Power 137 (7), 071503.
Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.
Schlegel, M., Noack, B. R., Jordan, P., Dillmann, A., Gröschel, E., Schröder, W., Wei, M., Freund, J. B., Lehmann, O. & Tadmor, G. 2012 On least-order flow representations for aerodynamics and aeroacoustics. J. Fluid Mech. 697, 367398.
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures: part I: coherent structures. Q. Appl. Maths 45 (3), 561571.
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12 (2), 221233.
Terhaar, S.2015 Identification and modeling of coherent structures in swirl stabilized combustors at dry and steam diluted conditions. PhD thesis, Technische Universität Berlin.
Terhaar, S., Oberleithner, K. & Paschereit, C. O. 2015 Key parameters governing the precessing vortex core in reacting flows: an experimental and analytical study. Proc. Combust. Inst. 35 (3), 33473354.
Troolin, D. R., Longmire, E. K. & Lai, W. T. 2006 Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap. Exp. Fluids 41 (2), 241254.
Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. & Kutz, J. N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391421.
Willert, C. E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.
Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. 2015 A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25 (6), 13071346.
Wise, J. 1955 The autocorrelation function and the spectral density function. Biometrika 42 (1–2), 151159.
Woszidlo, R., Ostermann, F., Nayeri, C. N. & Paschereit, C. O. 2015 The time-resolved natural flow field of a fluidic oscillator. Exp. Fluids 56 (6), 112.
Woszidlo, R., Stumper, T., Nayeri, C. & Paschereit, C. O. 2014 Experimental study on bluff body drag reduction with fluidic oscillators. In 52rd AIAA Aerospace Sciences Meeting, AIAA SciTech. American Institute of Aeronautics and Astronautics.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed