Skip to main content

A sphere in a uniformly rotating or shearing flow

  • J. J. BLUEMINK (a1), D. LOHSE (a1), A. PROSPERETTI (a1) (a2) and L. VAN WIJNGAARDEN (a1)

It is known that, in a linear shear flow, fluid inertia causes a particle to spin more slowly than the surrounding fluid. The present experiments performed with a sphere with fixed centre, but free to rotate in a fluid undergoing solid-body rotation around a horizontal axis indicate that the spin rate of the sphere can be larger than that of the flow when the sphere is sufficiently far from the axis. Numerical simulations at Reynolds number 5≤Re≤200 confirm this observation. To gain a better understanding of the phenomenon, the rotating flow is decomposed into two shear flows along orthogonal directions. It is found numerically that the cross-stream shear has a much stronger effect on the particle spin rate than the streamwise shear. The region of low stress at the back of the sphere is affected by the shear component of the incident flow. While for the streamwise case the shift is minor, it is significant for cross-stream shear. The results are interpreted on the basis of the effect of the shear flow components on the quasi-toroidal vortex attached in the sphere's near wake. The contributions of streamwise and cross-stream shear to the particle spin can be linearly superposed for Re=20 and 50.

Hide All
Annamalai P. & Cole R. 1986 Particle migration in rotating liquids. Phys. Fluids 29, 647649.
Auton T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199218.
Auton T. R., Hunt J. C. R. & Prud'homme M. 1988 The force excerted on a body in inviscid unsteady non-uniform rotating flow. J. Fluid Mech. 197, 241257.
Bagchi P. 2002 Particle dynamics in inhomogeneous flows at moderate-to-high Reynolds number. PhD thesis, University of Illinois.
Bagchi P. & Balachandar S. 2002 a Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14, 27192737.
Bagchi P. & Balachandar S. 2002 b Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech. 473, 379388.
Bagchi P. & Balachandar S. 2003 Inertial and viscous force on a rigid sphere in straining flows at moderate Reynolds numbers. J. Fluid Mech. 481, 105148.
Barkla H. M. & Auchterlonie L. J. 1971 The Magnus or Robins effect on rotating spheres. J. Fluid Mech. 47, 437447.
Bluemink J. J., van Nierop E., Luther S., Deen N., Magnaudet J., Prosperetti A. & Lohse D. 2005 Asymmetry-induced particle drift in a rotating flow. Phys. Fluids 17, 072106.
Brown D., Cortez R. & Minion M. 2001 Accurate projection methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 168, 196216.
Bugayevskiy L. M. & Snyder J. P. 1995 Map Projections – A Reference Manual. Taylor & Francis.
Candelier F., Angilella J. R., & Souhar M. 2004 On the effect of the Boussinesq-Basset force on the radial migration of a stokes particle in a vortex. Phys. Fluids 16, 17651776.
Candelier F., Angilella J.-R. & Souhar M. 2005 On the effect of inertia and history forces on the slow motion of a spherical solid or gaseous inclusion in a solid-body rotation flow. J. Fluid Mech. 545, 113139.
Childress S. 1964 The slow motion of a sphere in a rotating, viscous fluid. J. Fluid Mech. 20, 305314.
Clift R., Grace J. R. & Weber M. E. 1978 Bubbles, Drops and Particles. Academic.
Coimbra C. F. M. & Kobayashi M. H. 2002 On the viscous motion of a small particle in a rotating cylinder. J. Fluid Mech. 469, 257286.
Dandy D. S. & Dwyer H. A. 1990 A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer. J. Fluid Mech. 216, 381410.
Degani A. T., Walker J. D. A. & Smith F. T. 1998 Unsteady separation past moving surfaces. J. Fluid Mech. 375, 138.
Délery J. M. 2001 Robert Legendre and Henri Werlé: Toward the elucidation of three-dimensional separation. Annu. Rev. Fluid Mech. 33, 129154.
Dennis S. C. R., Singh S. N. & Ingham D. B. 1980 The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech. 101, 257279.
Dennis S. C. R. & Walker J. D. A. 1971 Calculation of the steady flow past a sphere at low and moderate {R}eynolds numbers. J. Fluid Mech. 48, 771789.
Drew D. A. & Lahey R. T. 1987 The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Intl J. Multiphase Flow 13, 113121.
Gao H., Ayyaswamy P. S. & Ducheyne P. 1997 Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Microgravity Sci. Technol. 10, 154165.
Ghidersa B. & Dusek J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.
Gotoh T. 1990 {Brownian} motion in a rotating flow. J. Statist. Phys. 59, 371402.
Happel J. & Brenner H. 1965 Low Reynolds Number Hydrodynamics. Prentice Hall.
Harper E. Y. & Chang I-Dee 1968 Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech. 33, 209225.
Herron I. H., Davis S. D. & Bretherton F. P. 1975 On the sedimentation of a sphere in a centrifuge. J. Fluid Mech. 68, 209234.
Jenny M., Bouchet G. & Dusek J. 2003 Nonvertical ascension or fall of a free sphere in a newtonian fluid. Phys. Fluids 15, L9L12.
Jenny M., Dusek J. & Bouchet G. 2004 Instabilities and transition of a sphere falling or ascending freely in a newtonian fluid. J. Fluid Mech. 508, 201239.
Johnson T. A. & Patel V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.
Kim D. & Choi H. 2002 Laminar flow past a sphere rotating in the streamwise direction. J. Fluid Mech. 461, 365386.
Kim S. & Karrila S. 1991 Microhydrodynamics. Butterworth-Heinemann.
Kobayashi M. H. & Coimbra C. F. M. 2005 On the stability of the Maxey-Riley equation in nonuniform linear flows. Phys. Fluids 17, 113301.
Kurose R. & Komori S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183206.
Lamb H. 1932 Hydrodynamics, 6th Edn. Dover.
Lee S. S. 2000 A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers. Comput. Fluids 29, 639667.
Lee S. S. & Wilczak J. M. 2000 The effects of shear flow on the unsteady wakes behind a sphere at moderate Reynolds numbers. Fluid Dyn. Res. 27, 122.
Lighthill M. J. 1956 Drift. J. Fluid Mech. 1, 3153.
Lin C. J., Peery J. H. & Schowalter W. R. 1970 Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech. 44, 117.
Lohse D. & Prosperetti A. 2003 Controlling bubbles. J. Phys.: Condens. Matter 15, S415S420.
Magnaudet J., Rivero M. & Fabre J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. J. Fluid Mech. 284, 97135.
McLaughlin J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.
Mei R. 1992 An approximate expression for the shear lift force on a spherical bubble at finite Reynolds number. Intl J. Multiphase Flow 18, 145147.
Mikulencak D. R. & Morris J. F. 2004 Stationary shear flow around fixed and free bodies at finite {R}eynolds number. J. Fluid Mech. 520, 215242.
Milne-Thompson L. M. 1968 Theoretical hydrodynamics. Macmillan.
Mortensen P. H., Andersson H. I., Gillissen J. J. J. & Boersma B. J. 2007 Particle spin in a turbulent shear flow. Phys. Fluids 19, 078109.
Mullin T., Li Y., del Pino C. & Ashmore J. 2005 An experimental study of fixed points and chaos in the motion of spheres in a stokes flow. IMA J. Appl. Maths 70, 666676.
Naciri M. A. 1992 Contribution à l'étude des forces exercées par un liquide sur une bulle de gaz: portance, masse ajoutée et interactions hydrodynamiques. PhD thesis, L'Ecole Central de Lyon.
Natarajan R. & Acrivos A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.
van Nierop E. A., Luther S., Bluemink J. J., Magnaudet J., Prosperetti A. & Lohse D. 2007 Drag and lift forces on bubbles in a rotating flow. J. Fluid Mech. 571, 439454.
Oesterlé B. & Dinh T. Bui 1998 Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exps. Fluids 25, 1622.
Paradisi P. & Tampieri F. 2001 Stability analysis of solid particle motion in rotational flows. Nuovo Cimento C 24c, 407420.
Poe G. G. & Acrivos A. 1975 Closed-streamline flows past rotating single cylinders and spheres: inertia effects. J. Fluid Mech. 72, 605623.
Raju N. & Meiburg E. 1997 Dynamics of small, spherical particles in vortical and stagnation point flow fields. Phys. Fluids 9, 299314.
Roberts G. O., Kornfeld D. M. & Fowlis W. W. 1991 Particle orbits in a rotating liquid. J. Fluid Mech. 229, 555567.
Rubinow S. I. & Keller J. B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447459.
Saffman P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400; and Corrigendum, 31, p. 624 (1968).
Sridhar G. & Katz J. 1995 Drag and lift forces on microscopic bubbles entrained by a vortex. Phys. Fluids. 7, 389399.
Surana A., Grunberg O. & Haller G. 2006 Exact theory of three-dimensional flow separation. Part 1. Steady separation. J. Fluid Mech. 564, 57103.
Taneda S. 1978 Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106. J. Fluid Mech. 85, 178192.
Thompson M. C., Leweke T. & Provansal M. 2001 Kinematics and dynamics of sphere wake transition. J. Fluids Struct. 15, 575585.
Tomboulides A. G. & Orszag S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.
Van Dommelen L. L. & Cowley S. J. 1990 On the Lagrangian description of unsteady boundary layer separation. Part 1. General theory. J. Flui Fluid Mech. 210, 593626.
Wang Y., Lu X. & Zhuang L. 2004 Numerical analysis of the rotating viscous flow approaching a solid sphere. Intl J. Numer. Meth. Fluids 44, 905925.
Wedemeyer E. H. 1964 The unsteady flow within a spinning cylinder. J. Fluid Mech. 20, 383399.
Weisenborn A. J. 1985 Drag on a sphere moving slowly in a rotating viscous fluid. J. Fluid Mech. 153, 215227.
Williams J. C. III 1977 Incompressible boundary-layer separation. Annu. Rev. Fluid Mech. 9, 113144.
Ye J. & Rocco M. C. 1992 Particle rotation in a Couette flow. Phys. Fluids A 4, 220224.
Zhang Z. & Prosperetti A. 2005 A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210, 292324.
Zhang Z. Z., Botto L. & Prosperetti A. 2006 Microstructural effects in a fully-resolved simulation of 1,024 sedimenting spheres. In IUTAM Symposium on Computational Approaches to Multiphase Flow, Fluid Mechanics and Its Applications, vol. 81.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 88 *
Loading metrics...

Abstract views

Total abstract views: 264 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.