Skip to main content

Spin-down in a rapidly rotating cylinder container with mixed rigid and stress-free boundary conditions

  • L. Oruba (a1), A. M. Soward (a2) and E. Dormy (a3)

A comprehensive study of the classical linear spin-down of a constant-density viscous fluid (kinematic viscosity $\unicode[STIX]{x1D708}$ ) rotating rapidly (angular velocity $\unicode[STIX]{x1D6FA}$ ) inside an axisymmetric cylindrical container (radius $L$ , height $H$ ) with rigid boundaries, which follows the instantaneous small change in the boundary angular velocity at small Ekman number $E=\unicode[STIX]{x1D708}/H^{2}\unicode[STIX]{x1D6FA}\ll 1$ , was provided by Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404). For that problem $E^{1/2}$ Ekman layers form quickly, triggering inertial waves together with the dominant spin-down of the quasi-geostrophic (QG) interior flow on the $O(E^{-1/2}\unicode[STIX]{x1D6FA}^{-1})$ time scale. On the longer lateral viscous diffusion time scale $O(L^{2}/\unicode[STIX]{x1D708})$ , the QG flow responds to the $E^{1/3}$ sidewall shear layers. In our variant, the sidewall and top boundaries are stress-free, a set-up motivated by the study of isolated atmospheric structures such as tropical cyclones or tornadoes. Relative to the unbounded plane layer case, spin-down is reduced (enhanced) by the presence of a slippery (rigid) sidewall. This is evidenced by the QG angular velocity, $\unicode[STIX]{x1D714}^{\star }$ , evolution on the $O(L^{2}/\unicode[STIX]{x1D708})$ time scale: spatially, $\unicode[STIX]{x1D714}^{\star }$ increases (decreases) outwards from the axis for a slippery (rigid) sidewall; temporally, the long-time $(\gg L^{2}/\unicode[STIX]{x1D708})$ behaviour is dominated by an eigensolution with a decay rate slightly slower (faster) than that for an unbounded layer. In our slippery sidewall case, the $E^{1/2}\times E^{1/2}$ corner region that forms at the sidewall intersection with the rigid base is responsible for a $\ln E$ singularity within the $E^{1/3}$ layer, causing our asymptotics to apply only at values of $E$ far smaller than can be reached by our direct numerical simulation (DNS) of the linear equations governing the entire spin-down process. Instead, we solve the $E^{1/3}$ boundary layer equations for given $E$ numerically. Our hybrid asymptotic–numerical approach yields results in excellent agreement with our DNS.

Corresponding author
Email addresses for correspondence:,,
Hide All
Abramowitz M. & Stegun I. A. 2010 NIST Handbook of Mathematical Functions (ed. Olver F. W. J., Lozier D. W., Boisvert R. F. & Clark C. W.), Cambridge University Press; available online
Barcilon V. 1968 Stewartson layers in transient rotating fluid flows. J. Fluid Mech. 33, 815825.
Benton E. R. & Clark A. 1974 Spin-up. Annu. Rev. Fluid Mech. 6, 257280.
Chelton D. B., Schlax M. G. & Samelson R. M. 2011 Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167216.
Dormy E. & Soward A. M. 2007 Mathematical aspects of natural dynamos. In The Fluid Mechanics of Astrophysics and Geophysics (ed. Soward A. M. & Ghil M.), vol. 13, pp. 120136. Chapman & Hall.
Duck P. W. & Foster M. R. 2001 Spin-up of homogeneous and stratified fluids. Annu. Rev. Fluid Mech. 33, 231263.
Erdélyi A., Magnus W., Oberhettinger F. & Triconi F. G. 1953 Higher Transcendetal Functions, Vol. II. Bateman Manuscript Project. McGraw-Hill.
Greenspan H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Greenspan H. P. & Howard L. N. 1963 On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385404.
Hinch E. J. 1991 Perturbation Methods, Cambridge Texts in Applied Mathematics. Cambridge University Press.
Hyun J. M., Leslie F., Fowlis W. W. & Warn-Varnas A. 1983 Numerical solutions for spin-up from rest in a cylinder. J. Fluid Mech. 127, 263281.
Kerswell R. R. & Barenghi C. F. 1995 On the viscous decay rates of inertial waves in a rotating circular cylinder. J. Fluid Mech. 285, 203214.
Marcotte F., Dormy E. & Soward A. M. 2016 On the equatorial Ekman layer. J. Fluid Mech. 803, 395435.
Montgomery M. T., Snell H. D. & Yang Z. 2001 Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci. 58, 421435.
Moore D. W. & Saffman P. G. 1969 The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body. Phil. Trans. R. Soc. Lond. A 264 (1156), 597634.
Oruba L., Davidson P. & Dormy E. 2017 Eye formation in rotating convection. J. Fluid Mech. 812, 890904.
Park J. S. & Hyun J. M. 1997 Transient Stewartson layers of a rotating compressible fluid. Fluid Dyn. Res. 19, 303325.
Persing J., Montgomery M. T., Smith R. K. & McWilliams J. C. 2015 On the realism of quasi steady-state hurricanes. Q. J. R. Meteorol. Soc. 141, 114.
Read P. L. 1986a Super-rotation and diffusion of axial angular momentum. I. ‘Speed limits’ for axisymmetric flow in a rotating cylindrical fluid annulus. Q. J. R. Meteorol. Soc. 112, 231251.
Read P. L. 1986b Super-rotation and diffusion of axial angular momentum. II. A review of quasi-axisymmetric models of planetary atmospheres. Q. J. R. Meteorol. Soc. 112, 253272.
Smith R. K. & Montgomery M. T. 2010 Hurricane boundary-layer theory. Q. J. R. Meteorol. Soc. 136, 16651670.
Stewartson K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.
Watson G. N. 1966 A Treatise on the Theory of Bessel Functions. Cambridge University Press.
Wedemeyer E. H. 1964 The unsteady flow within a spinning cylinder. J. Fluid Mech. 20, 383399.
Williams G. P. 1968 Thermal convection in a rotating fluid annulus: part 3. Suppression of the frictional constraint on lateral boundaries. J. Atmos. Sci. 25, 10341045.
Zhang K. & Liao X. 2008 On the initial-value problem in a rotating circular cylinder. J. Fluid Mech. 610, 425443.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 119 *
Loading metrics...

Abstract views

Total abstract views: 194 *
Loading metrics...

* Views captured on Cambridge Core between 30th March 2017 - 20th February 2018. This data will be updated every 24 hours.