Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-10-08T03:28:40.322Z Has data issue: false hasContentIssue false

Spiral vortex flows of the counter-rotating Taylor–Couette system in the narrow-gap limit

Published online by Cambridge University Press:  08 October 2025

Masato Nagata*
Affiliation:
Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
*
Corresponding author: Masato Nagata, nagata.masato.45x@st.kyoto-u.ac.jp

Abstract

Finite-amplitude spiral vortex flows are obtained numerically for the Taylor–Couette system in the narrow limit of the gap between two concentric rotating cylinders. These spiral vortex flows bifurcate from circular Couette flow before axisymmetric Taylor vortex flow sets in when the ratio $\mu$ of the angular velocities of the outer to the inner cylinder is less than −0.78, consistent with the results of linear stability analysis by Krueger et al. (J. Fluid Mech., vol. 24, 1966, pp. 521–538), while the boundary of existence of spiral vortex flows is determined not by the linear critical point, but by the saddle-node point of the subcritical spiral vortex flow branch for $\mu \lessapprox -0.75$, when the axial wavenumber $\beta =2.0$. It is found that the nonlinear spiral vortex flows exhibit the mean flow in the axial direction as well as in the azimuthal direction, and that the profiles of both mean-flow components are asymmetric about the centre plane between the gap.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andereck, C.D., Liu, S.S. & Swinney, H.L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.10.1017/S0022112086002513CrossRefGoogle Scholar
Antonijoan, J., Marquès, F. & Sánchez, J. 1998 Non-linear spirals in the Taylor-Couette problem. Phys. Fluids 10, 829838.CrossRefGoogle Scholar
Bengana, Y. & Tuckerman, L.S. 2019 Spirals and ribbons in counter-rotating Taylor–Couette flow: frequencies from mean flows and heteroclinic orbits. Phys. Rev. Fluids 4, 044402.10.1103/PhysRevFluids.4.044402CrossRefGoogle Scholar
Chandrasekhar, D. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chossat, P. & Iooss, G. 1994 The Couette–Taylor problem. In Applied Mathematics Sciences, vol. 102, Springer.Google Scholar
Coles, J.A. 1976 Taylor-vortex instability and annulus-length effects. J. Fluid Mech. 75, 115.10.1017/S0022112076000098CrossRefGoogle Scholar
Demay, Y., Looss, G. & Laure, P. 1992 a Wave patterns in small gap Couette–Taylor problem. Eur. J. Mech. B 11 (5), 621634.Google Scholar
Demay, Y., Iooss, G. & Laure, P. 1992 b The Couette Taylor problem in the small gap approximation. In Ordered and Turbulent Patterns in Taylor-Couette flow. (ed. C.D. Andereck & F. Hayot) NATO ASI Series, vol. 297, pp. 5157.Google Scholar
Drazin, P.G. & Reid, W.H. 1981 Hydrodynamic Stability. Applied Mathematical Sciences. Cambridge University Press.Google Scholar
Dutcher, C.S. & Muller, S.J. 2009 Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor–Couette flows. J. Fluid Mech. 641, 85113.10.1017/S0022112009991431CrossRefGoogle Scholar
Edwards, W.S., Tagg, R.P., Dornblaser, B.C., Tuckerman, L.S. & Swinney, H.L. 1991 Periodic traveling waves with nonperiodic pressure. Eur. J. Mech. B 10, 205210.Google Scholar
Golubitsky, M. & Langford, W.F. 1988 Pattern formation and bistability in flow between counterrotating cylinders. Physica D 32, 362392.10.1016/0167-2789(88)90063-2CrossRefGoogle Scholar
Goharzadeh, A. & Mutabazi, I. 2010 High-Reynolds number Taylor–Couette turbulence. Phys. Rev. E 82, 016306.CrossRefGoogle Scholar
Grossman, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48 (1), 5380.10.1146/annurev-fluid-122414-034353CrossRefGoogle Scholar
Harris, D.H. & Reid, W.H. 1964 On the stability of viscous flow between rotating cylinders. Part 2. Numerical analysis. J. Fluid Mech. 20, 95101.10.1017/S0022112064001033CrossRefGoogle Scholar
Hoffmann, C., Lücke, M. & Pinter, A. 2004 Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow. Phys. Rev. E 69, 056309.CrossRefGoogle ScholarPubMed
Itoh, N. 1996 Development of spiral and wavy vortices in circular Couette flow. Fluid Dyn. Res. 17, 87105.10.1016/0169-5983(95)00023-2CrossRefGoogle Scholar
Koschmieder, E.L. 1992 Bénard Cells and Taylor Vortices. Cambridge University Press.Google Scholar
Krueger, E.R., Gross, A. & Di Prima, R.C. 1966 On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech. 24, 521538.10.1017/S002211206600079XCrossRefGoogle Scholar
Langford, W.F., Tagg, R., Kostelich, E.J., Swinney, H.L. & Golubitsky, M. 1988 Primary instabilities and bicriticality in flow between counter rotating cylinders. Phys. Fluids 31 (4), 776785.10.1063/1.866813CrossRefGoogle Scholar
Lin, C.C. 1955 Theory of Hydrodynamic Stability. Cambridge University Press.Google Scholar
Masuda, S., Fukuda, S. & Nagata, M. 2008 Instabilities of plane Poiseuille flow with a streamwise system rotation. J. Fluid Mech. 603, 189206.10.1017/S0022112008000943CrossRefGoogle Scholar
Meseguer, M., Mellibovsky, F., Avila, M. & Marquès, F. 2009 Families of subcritical spirals in highly counter-rotating Taylor–Couette flow. Phys. Rev. E 79, 036309.10.1103/PhysRevE.79.036309CrossRefGoogle ScholarPubMed
Nagata, M. 1986 Bifurcations in Couette flow between almost corotating cylinders. J. Fluid Mech. 169, 229250.10.1017/S0022112086000605CrossRefGoogle Scholar
Nagata, M. 2023 Taylor–Couette flow in the narrow-gap limit. Philos. Trans. R. Soc. A. 381, 202220134.10.1098/rsta.2022.0134CrossRefGoogle ScholarPubMed
Nagata, M. 2024 Taylor–Couette system in the narrow-gap limit, revisited, with a corrigendum to the paper by Nagata (2023, Philosophical Transaction A.). Proc. R. Soc. A. 480, 20230890.10.1098/rspa.2023.0890CrossRefGoogle Scholar
Nagata, M., Song, B. & Wall, D.P. 2021 Onset of vortex structures in rotating plane Couette flow. J. Fluid Mech. 918, A2.10.1017/jfm.2021.283CrossRefGoogle Scholar
Pinter, A., Lücke, M. & Hoffmann, C. 2006 Competition between traveling fluid waves of left and right spiral vortices and their different amplitude combinations. Phys. Rev. Lett. 96, 044506.10.1103/PhysRevLett.96.044506CrossRefGoogle ScholarPubMed
Saffman, P.G. 1983 Vortices, stability, and turbulence. Ann. N.Y. Acad. Sci. 404, 1224.10.1111/j.1749-6632.1983.tb19411.xCrossRefGoogle Scholar
Sánchez, J., Crespo, D. & Marquès, F. 1993 Spiral vortices between concentric cylinders. Appl. Sci. Res. 51, 5559.10.1007/BF01082514CrossRefGoogle Scholar
Snyder, H.A. 1970 Waveforms in rotating Couette flow. Intl J. Non-Linear Mechanics 5, 659685.CrossRefGoogle Scholar
Tabeling, P. 1983 Dynamics of phase variable in the Taylor vortex system. J. Phys. Lett. 44, 665672.10.1051/jphyslet:019830044016066500CrossRefGoogle Scholar
Tagg, R. 1992 A guide to the literature related to the Taylor–Couette problem. In Ordered and Turbulent Patterns in Taylor–Couette Flow, (ed. C.D. Andereck & F. Hayot), Springer-Verlag New York.Google Scholar
Tagg, R. 1994 The Couette–Taylor problem. Nonlinear Sci. Today 4 (3), 125.Google Scholar
Taylor, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. A 223, 289343.Google Scholar