Skip to main content
    • Aa
    • Aa

Spreading and bistability of droplets on differentially heated substrates

  • J. B. Bostwick (a1)

An axisymmetric drop spreads on a radially heated, partially wetting solid substrate in a rotating geometry. The lubrication approximation is applied to the field equations for this thin viscous drop to yield an evolution equation that captures the dependence of viscosity, surface tension, gravity, centrifugal forces and thermocapillarity. We study the quasi-static spreading regime, whereby droplet motion is controlled by a constitutive law that relates the contact angle to the contact-line speed. Non-uniform heating of the substrate can generate both vertical and radial temperature gradients along the drop interface, which produce distinct thermocapillary forces and equivalently flows that affect the spreading process. For the non-rotating system, competition between surface chemistry (wetting) and thermocapillary flows induced by the thermal gradients gives rise to bistability in certain regions of parameter space in which the droplets converge to an equilibrium shape. The centrifugal forces that develop in a rotating geometry enlarge the bistability regions. Parameter regimes in which the droplet spreads indefinitely are identified and spreading laws are computed to compare with experimental results from the literature.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. W. Benintendi & M. K. Smith 1999 The spreading of a non-isothermal liquid droplet. Phys. Fluids 11, 982989.

D. Bonn , J. Eggers , J. Indekeu , J. Meunier & E. Rolley 2009 Wetting: statics and dynamics. Rev. Mod. Phys. 81, 739805.

C. D. Chen 1988 Experiments on a spreading drop and its contact angle on a solid. J. Colloid Interface Sci. 122, 6072.

J. Z. Chen , S. M. Troian , A. A. Darhuber & S. Wagner 2005 Effect of contact angle hysteresis on thermocapillary droplet actuation. J. Appl. Phys. 97, 014906.

S. Daniel , M. K. Chadhury & J. C. Chen 2001 Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633636.

K. E. Daniels , O. Brausch , W. Pesch & E. Bodenschatz 2008 Competition and bistability of ordered undulations and undulation chaos in inclined layer convection. J. Fluid Mech. 597, 261282.

A. A. Darhuber & S. M. Troian 2005 Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech. 37, 425455.

A. A. Darhuber , S. M. Troian & S. Wagner 2002 Generation of high-resolution surface temperature distributions. J. Appl. Phys. 91, 56865693.

S. H. Davis 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403435.

G. J. Dunn , B. R. Duffy , S. K. Wilson & D. Holland 2009 Quasi-steady spreading of a thin ridge of fluid with temperature-dependent surface tension on a heated or cooled substrate. Q. J. Mech. Appl. Maths 62, 365402.

E. B. Dussan V. 1979 On the spreading of liquid on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.

P. Ehrhard 1994 The spreading of hanging drops. J. Colloid Interface Sci. 168, 242246.

M. L. Ford & A. Nadim 1994 Thermocapillary migration of an attached drop on a solid surface. Phys. Fluids 6, 31833185.

P. G. de Gennes 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.

L. M. Hocking 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36, 5569.

C. Huh & L. E. Scriven 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.

O. K. Matar & R. V. Craster 2009 Dynamics of surfactant-assisted spreading. Soft Matt. 5, 38013809.

S. Mukhopadhyay , N. Murisic , R. P. Behringer & L. Kondic 2011 Evolution of droplets of perfectly wetting liquid under the influence of thermocapillary forces. Phys. Rev. E 83, 046302.

H. B. Nguyen & J. C. Chen 2010a Numerical study of a droplet migration induced by combined thermocapillary-buoyancy convection. Phys. Fluids 22, 122101.

H. B. Nguyen & J. C. Chen 2010b A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface. Phys. Fluids 22, 062102.

A. Oron , S. H. Davis & S. G. Bankoff 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.

S. Rosenblat & S. H. Davis 1985 How do liquid drops spread on solids?. In Frontiers in Fluid Mechanics (ed. S. H. Davis & J. L. Lumley ), pp. 171183. Springer.

M. A. Spaid & G. M. Homsy 1996 Stability of viscoelastic dynamic contact lines: an experimental study. Phys. Fluids 9, 823833.

H. A. Stone , A. D. Stroock & A. Ajdari 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.

L. H. Tanner 1979 The spreading of silicone oil on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473.

M. Vogel , P. Ehrhard & P. Steen 2005 The electroosmotic droplet switch: countering capillarity with electrokinetics. Proc. Natl Acad. Sci. 102, 1197411979.

M. J. Vogel & P. H. Steen 2010 Capillarity-based switchable adhesion. Proc. Natl Acad. Sci. 107, 33773381.

D. S. Zimmerman , S. A. Triana & D. P. Lathrop 2011 Bi-stability in turbulent, rotating spherical couette flow. Phys. Fluids 23, 065104.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 74 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.