Skip to main content

Stability and sensitivity of a cross-flow-dominated Falkner–Skan–Cooke boundary layer with discrete surface roughness

  • Mattias Brynjell-Rahkola (a1), Nima Shahriari (a1), Philipp Schlatter (a1), Ardeshir Hanifi (a1) and Dan S. Henningson (a1)...

With the motivation of determining the critical roughness size, a global stability and sensitivity analysis of a three-dimensional Falkner–Skan–Cooke (FSC) boundary layer with a cylindrical surface roughness is performed. The roughness size is chosen such that breakdown to turbulence is initiated by a global version of traditional secondary instabilities of the cross-flow (CF) vortices instead of an immediate flow tripping at the roughness. The resulting global eigenvalue spectra of the systems are found to be very sensitive to numerical parameters and domain size. This sensitivity to numerical parameters is quantified using the $\unicode[STIX]{x1D700}$ -pseudospectrum, and the dependency on the domain is analysed through an impulse response, structural sensitivity analysis and an energy budget. It is shown that while the frequencies remain relatively unchanged, the growth rates increase with domain size, which originates from the inclusion of stronger CF vortices in the baseflow. This is reflected in a change in the rate of advective energy transport by the baseflow. It is concluded that the onset of global instability in a FSC boundary layer as the roughness height is increased does not correspond to an immediate flow tripping behind the roughness, but occurs for lower roughness heights if sufficiently long domains are considered. However, the great sensitivity results in an inability to accurately pinpoint the exact parameter values for the bifurcation, and the large spatial growth of the disturbances in the long domains eventually becomes larger than can be resolved using finite-precision arithmetic.

Corresponding author
Email address for correspondence:
Hide All
Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6), 068102.
Alizard, F. & Robinet, J.-C. 2007 Spatially convective global modes in a boundary layer. Phys. Fluids 19 (11), 114105.
Bagheri, S, Åkervik, E., Brandt, L. & Henningson, D. S. 2009 Matrix-free methods for the stability and control of boundary layers. AIAA J. 47 (5), 10571068.
Bech, K. H., Henningson, D. S. & Henkes, R. A. W. M. 1998 Linear and nonlinear development of localized disturbances in zero and adverse pressure gradient boundary-layers. Phys. Fluids 10 (6), 14051418.
Brandt, L., Cossu, C., Chomaz, J.-M., Huerre, P. & Henningson, D. S. 2003 On the convectively unstable nature of optimal streaks in boundary layers. J. Fluid Mech. 485, 221242.
Canton, J., Schlatter, P. & Örlü, R. 2016 Modal instability of the flow in a toroidal pipe. J. Fluid Mech. 792, 894909.
Cerqueira, S. & Sipp, D. 2014 Eigenvalue sensitivity, singular values and discrete frequency selection mechanism in noise amplifiers: the case of flow induced by radial wall injection. J. Fluid Mech. 757, 770799.
Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S.2007 SIMSON – a pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. Department of Mechanics, Royal Institute of Technology, KTH.
Citro, V., Giannetti, F., Luchini, P. & Auteri, F. 2015 Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27 (8), 084110.
Cooke, J. C. 1950 The boundary layer of a class of infinite yawed cylinders. Math. Proc. Camb. Phil. Soc. 46 (04), 645648.
Deville, O., Fischer, P. F. & Mund, E. H. 2002 High-Order Methods for Incompressible Fluid Flow. Cambridge University Press.
von Doenhoff, A. E. & Braslow, A. L. 1961 The effect of distributed surface roughness on laminar flow. In Boundary Layer and Flow Control: its Principles and Application (ed. Lachmann, G. V.), pp. 657681. Pergamon.
Ehrenstein, U. & Gallaire, F. 2005 On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer. J. Fluid Mech. 536, 209218.
Falkner, V. M. & Skan, S. W. 1931 Some approximate solutions of the boundary layer equations. Phil. Mag. 12 (80), 865896.
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000. Available at:
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 Modal and transient dynamics of jet flows. Phys. Fluids 25 (4), 044103.
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.
Gregory, N., Stuart, J. T. & Walker, W. S. 1955 On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Phil. Trans. R. Soc. Lond. A 248 (943), 155199.
Hill, D. C. 1995 Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.
Högberg, M. & Henningson, D. 1998 Secondary instability of cross-flow vortices in Falkner–Skan–Cooke boundary layers. J. Fluid Mech. 368, 339357.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Kurz, H. B. E. & Kloker, M. J. 2016 Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. J. Fluid Mech. 796, 158194.
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1997 ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM.
Lesshafft, L.2017 Artificial eigenmodes in truncated flow domains. arXiv:1704.08450v1.
Loiseau, J.-C., Robinet, J.-C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.
Mack, C. J., Schmid, P. J. & Sesterhenn, J. L. 2008 Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes. J. Fluid Mech. 611, 205214.
Malik, M. R., Li, F., Choudhari, M. M. & Chang, C.-L. 1999 Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J. Fluid Mech. 399, 85115.
Peplinski, A., Schlatter, P., Fischer, P. F. & Henningson, D. S. 2014 Stability tools for the spectral-element code Nek5000; application to jet-in-crossflow. In ICOSAHOM’12: International Conference on Spectral and High Order Methods for Partial Differential Equations (ed. Azaïez, M., El Fekih, H. & Hesthaven, J. S.), pp. 349359. Springer.
Peplinski, A., Schlatter, P. & Henningson, D. S. 2015 Global stability and optimal perturbation for a jet in cross-flow. Eur. J. Mech. (B/Fluids) 49, 438447.
Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413440.
Schlichting, H. 1979 Boundary-Layer Theory, 7th edn. McGraw-Hill.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.
Toh, K. C. & Trefethen, L. N. 1996 Calculation of pseudospectra by the Arnoldi iteration. SIAM J. Sci. Stat. Comput. 17 (1), 115.
Trefethen, L. N. 1992 Pseudospectra of matrices. Numer. Anal. 91, 234266.
Wassermann, P. & Kloker, M. 2002 Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed