Skip to main content Accessibility help

Stability characteristics of a counter-rotating unequal-strength Batchelor vortex pair

  • Kris Ryan (a1), Christopher J. Butler (a1) and Gregory J. Sheard (a1)


A Batchelor vortex represents the asymptotic solution of a trailing vortex in an aircraft wake. In this study, an unequal-strength, counter-rotating Batchelor vortex pair is employed as a model of the wake emanating from one side of an aircraft wing; this model is a direct extension of several prior investigations that have considered unequal-strength Lamb–Oseen vortices as representations of the aircraft wake problem. Both solution of the linearized Navier–Stokes equations and direct numerical simulations are employed to study the linear and nonlinear development of a vortex pair with a circulation ratio of . In contrast to prior investigations considering a Lamb–Oseen vortex pair, we note strong growth of the Kelvin mode coupled with an almost equal growth rate of the Crow instability. Three stages of nonlinear instability development are defined. In the initial stage, the Kelvin mode amplitude becomes sufficiently large that oscillations within the core of the weaker vortex are easily observable and significantly affect the profile of the weaker vortex. In the secondary stage, filaments of secondary vorticity emanate from the weaker vortex and are convected around the stronger vortex. In the tertiary stage, a transition in the dominant instability wavelength is observed from the short-wavelength Kelvin mode to the longer-wavelength Crow instability. Much of the instability growth is observed on the weaker vortex of the pair, although small perturbations in the stronger vortex are observed in the tertiary nonlinear growth phase.


Corresponding author

Email address for correspondence:


Hide All
1. Ash, R. L. & Khorrami, M. R. 1995 Vortex stability. In Fluid Vortices (ed. Green, S. I. ), chap. 8, pp. 317372. Kluwer.
2. Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20 (4), 645658.
3. Blackburn, H. M. & Sheard, G. J. 2010 On quasi-periodic and subharmonic Floquet wake instabilities. Phys. Fluids 22 (3), 031701.
4. Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.
5. Bristol, R. L., Ortega, J. M., Marcus, P. S. & Savaş, Ö. 2004 On cooperative instabilities of parallel vortex pairs. J. Fluid Mech. 517, 331358.
6. Crouch, J. D. 1997 Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311330.
7. Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.
8. Eloy, C. & Le Dizès, S. 1999 Three-dimensional instability of Burgers and Lamb–Oseen vortices in a strain field. J. Fluid Mech. 378, 145166.
9. Fabre, D., Jacquin, L. & Loof, A. 2002 Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319328.
10. Garten, J. F., Werne, J., Fritts, D. C. & Arendt, S. 2001 Direct numerical simulations of the Crow instability and subsequent vortex reconnection in a stratified flow. J. Fluid Mech. 426, 145.
11. Heaton, C. J. 2007 Centre modes in inviscid swirling flows, and their application to the stability of the Batchelor vortex. J. Fluid Mech. 576, 325348.
12. Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
13. Jimenez, J. 1975 Stability of a pair of corotating vortices. Phys. Fluids 18, 15801581.
14. Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.
15. Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press.
16. Karniadakis, G. E. & Triantafyllou, G. S. 1992 Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238, 130.
17. Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.
18. Lacaze, L., Birbaud, A.-L. & Le Dizès, S. 2005 Elliptic instability in a Rankine vortex with axial flow. Phys. Fluids 17, 017101–1.
19. Lacaze, L., Ryan, K. & Le Dizès, S. 2007 Elliptic instability in a strained Batchelor vortex. J. Fluid Mech. 577, 341361.
20. Laporte, F. & Corjon, A. 2000 Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12, 10161031.
21. Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169201.
22. Le Dizès, S. & Verga, A. 2002 Viscous interactions of two co-rotating vortices before merging. J. Fluid Mech. 467, 389410.
23. Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.
24. Leweke, T. & Williamson, C. H. K. 2011 Experiments on long-wavelength instability and reconnection of a vortex pair. Phys. Fluids 23, 024101.
25. Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.
26. Mariotti, A., Legras, B. & Dritschel, D. G. 1994 Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids 6, 3954.
27. Marshall, J. S., Brancher, P. & Giovannini, A. 2001 Interaction of unequal anti-parallel vortex tubes. J. Fluid Mech. 446, 229252.
28. Meunier, P. & Leweke, T. 2005 Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 125159.
29. Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.
30. Ortega, J. M., Bristol, R. L. & Savaş, Ö. 2003 Experimental study of the instability of unequal-strength counter-rotating vortex pairs. J. Fluid Mech. 474, 3584.
31. Roy, C., Leweke, T., Thompson, M. C. & Hourigan, K. 2011 Experiments on the elliptic instability in vortex pairs with axial core flow. J. Fluid Mech. 677, 383416.
32. Roy, C., Schaeffer, N., Le Dizès, S. & Thompson, M. C. 2008 Stability of a pair of co-rotating vortices with axial flow. Phys. Fluids 20, 094101.
33. Ryan, K. & Sheard, G. J. 2007 Nonlinear growth of short-wave instabilities in a Batchelor vortex pair. In Proceedings of the 16th Australasian Fluid Mechanics Conference, School of Engineering, The University of Queensland (ed. Jacobs, P., McIntyre, T., Cleary, M., Buttsworth, D., Mee, D., Clements, R., Morgan, R. & Lemckert, C. ). pp. 14631469.
34. Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
35. Schaeffer, N. & Le Dizès, S. 2010 Nonlinear dynamics of the elliptic instability. J. Fluid Mech. 646, 471480.
36. Scorer, R. S. & Davenport, L. J. 1970 Contrails and aircraft downwash. J. Fluid Mech. 43 (3), 451464.
37. Sheard, G. J., Fitzgerald, M. J. & Ryan, K. 2009 Cylinders with square cross section: wake instabilities with incidence angle variation. J. Fluid Mech. 630, 4369.
38. Sipp, D., Jacquin, L. & Cossu, C. 2000 Self-adaptation and viscous selection in concentrated two-dimensional vortex dipoles. Phys. Fluids 12, 245.
39. So, J., Ryan, K. & Sheard, G. J. 2011 Short-wave instabilities on a vortex pair of unequal strength circulation ratio. Appl. Math. Model. 35 (4), 15811590.
40. Thomas, P. J. & Auerbach, D. 1994 The observation of the simultaneous development of a long- and a short-wave instability mode on a vortex pair. J. Fluid Mech. 265, 289302.
41. Thompson, M. C., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake of a circular cylinder. Exp. Therm. Fluid Sci. 12 (2), 190196.
42. Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 76, 721733.
43. Widnall, S. E., Bliss, D. B. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 3547.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Stability characteristics of a counter-rotating unequal-strength Batchelor vortex pair

  • Kris Ryan (a1), Christopher J. Butler (a1) and Gregory J. Sheard (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.