Skip to main content Accessibility help

Stability of a temporally evolving natural convection boundary layer on an isothermal wall

  • Junhao Ke (a1), N. Williamson (a1), S. W. Armfield (a1), G. D. McBain (a2) and S. E. Norris (a3)...


The stability properties of a natural convection boundary layer adjacent to an isothermally heated vertical wall, with Prandtl number 0.71, are numerically investigated in the configuration of a temporally evolving parallel flow. The instantaneous linear stability of the flow is first investigated by solving the eigenvalue problem with a quasi-steady assumption, whereby the unsteady base flow is frozen in time. Temporal responses of the discrete perturbation modes are numerically obtained by solving the two-dimensional linearized disturbance equations using a ‘frozen’ base flow as an initial-value problem at various $Gr_{\unicode[STIX]{x1D6FF}}$ , where $Gr_{\unicode[STIX]{x1D6FF}}$ is the Grashof number based on the velocity integral boundary layer thickness $\unicode[STIX]{x1D6FF}$ . The resultant amplification rates of the discrete modes are compared with the quasi-steady eigenvalue analysis, and both two-dimensional and three-dimensional direct numerical simulations (DNS) of the temporally evolving flow. The amplification rate predicted by the linear theory compares well with the result of direct numerical simulation up to a transition point. The extent of the linear regime where the perturbations linearly interact with the base flow is thus identified. The value of the transition $Gr_{\unicode[STIX]{x1D6FF}}$ , according to the three-dimensional DNS results, is dependent on the initial perturbation amplitude. Beyond the transition point, the DNS results diverge from the linear stability predictions as nonlinear mechanisms become important.


Corresponding author

Email address for correspondence:


Hide All
Abedin, M. Z., Tsuji, T. & Hattori, Y. 2009 Direct numerical simulation for a time-developing natural-convection boundary layer along a vertical flat plate. Intl J. Heat Mass Transfer 52 (19-20), 45254534.10.1016/j.ijheatmasstransfer.2009.03.061
Aberra, T., Armfield, S. W., Behnia, M. & McBain, G. D. 2012 Boundary layer instability of the natural convection flow on a uniformly heated vertical plate. Intl J. Heat Mass Transfer 55 (21-22), 60976108.10.1016/j.ijheatmasstransfer.2012.06.023
Armfield, S. W. & Patterson, J. C. 1992 Wave properties of natural-convection boundary layers. J. Fluid Mech. 239, 195211.10.1017/S0022112092004373
Brooker, A. M. H., Patterson, J. C., Graham, T. & Schöpf, W. 2000 Convective instability in a time-dependent buoyancy driven boundary layer. Intl J. Heat Mass Transfer 43 (2), 297310.10.1016/S0017-9310(99)00127-1
Dring, R. P. & Gebhart, B. 1968 A theoretical investigation of disturbance amplification in external laminar natural convection. J. Fluid Mech. 34 (3), 551564.10.1017/S0022112068002077
Dring, R. P. & Gebhart, B. 1969 An experimental investigation of disturbance amplification in external laminar natural convection flow. J. Fluid Mech. 36 (3), 447464.10.1017/S0022112069001753
Eckert, E. R. G. 1951 Interferometric studies on the stability and transition to turbulence of a free convection boundary layer. In Proceedings of the General Discussion on Heat Transfer, pp. 321323. Institute of Mechanical Engineers.
Eckert, E. R. G., Soehngen, E. & Schneider, F. J. 1955 Studien zum Umschlag laminar-turbulent der freien Konvektions-Strömung an einer senkrechten Platte. In Anniversary volume Fünfzig Jahre Grenzschichtforschung, pp. 407418. Vieweg+Teubner Verlag.10.1007/978-3-663-20219-6_38
Gebhart, B. & Mahajan, R. L. 1982 Instability and transition in buoyancy-induced flows. In Adv. Appl. Mech., vol. 22, pp. 231315. Elsevier.
Gill, A. E. & Davey, A. 1969 Instabilities of a buoyancy-driven system. J. Fluid Mech. 35 (4), 775798.10.1017/S0022112069001431
Goldstein, R. J. & Briggs, D. G. 1964 Transient free convection about vertical plates and circular cylinders. Trans. ASME J. Heat Transfer 86 (4), 490500.10.1115/1.3688728
Hieber, C. A. & Gebhart, B. 1971 Stability of vertical natural convection boundary layers: some numerical solutions. J. Fluid Mech. 48 (4), 625646.10.1017/S0022112071001770
Illingworth, C. R. 1950 Unsteady laminar flow of gas near an infinite flat plate. In Math. Proc. Camb. Philos. Soc., vol. 46, pp. 603613. Cambridge University Press.
Janssen, R. & Armfield, S. W. 1996 Stability properties of the vertical boundary layers in differentially heated cavities. Intl J. Heat Fluid Flow 17 (6), 547556.10.1016/S0142-727X(96)00077-X
Joshi, Y. & Gebhart, B. 1987 Transition of transient vertical natural-convection flows in water. J. Fluid Mech. 179, 407438.10.1017/S0022112087001599
Knowles, C. P. & Gebhart, B. 1968 The stability of the laminar natural convection boundary layer. J. Fluid Mech. 34 (4), 657686.10.1017/S0022112068002156
Krane, M. J. M. & Gebhart, B. 1993 The hydrodynamic stability of a one-dimensional transient buoyancy-induced flow. Intl J. Heat Mass Transfer 36 (4), 977988.10.1016/S0017-9310(05)80282-0
Kurtz, E. F.1961 A study of the stability of laminar parallel flows. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
Kurtz, E. F. & Crandall, S. H. 1962 Computer-aided analysis of hydrodynamic stability. J. Math. Phys. 41 (1–4), 264279.10.1002/sapm1962411264
Mahajan, R. L. & Gebhart, B. 1979 An experimental determination of transition limits in a vertical natural convection flow adjacent to a surface. J. Fluid Mech. 91 (1), 131154.10.1017/S0022112079000070
McBain, G. D., Armfield, S. W. & Desrayaud, G. 2007 Instability of the buoyancy layer on an evenly heated vertical wall. J. Fluid Mech. 587, 453469.10.1017/S0022112007007318
Morkovin, M. V. 1969 On the many faces of transition. In Viscous Drag Reduction, pp. 131. Springer.
Nachtsheim, P. R.1963 Stability of free-convection boundary-layer flows. NASA Tech. Note D-2089. NASA.
Nakao, K., Hattori, Y. & Suto, H. 2017 Numerical investigation of a spatially developing turbulent natural convection boundary layer along a vertical heated plate. Intl J. Heat Fluid Flow 63, 128138.10.1016/j.ijheatfluidflow.2016.09.006
Ostrach, S.1952 An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. NACA Tech. Rep. 1111.
Otto, S. R.1993 On the stability of a time dependent boundary layer. NASA Tech. Note CR-191542.
Patterson, J. C. & Imberger, J. 1980 Unsteady natural convection in a rectangular cavity. J. Fluid Mech. 100 (1), 6586.10.1017/S0022112080001012
Plapp, J. E.1957 I. laminar boundary layer stability in free convection. PhD thesis, California Institute of Technology, Pasadena, CA.
Polymeropoulos, C. E. & Gebhart, B. 1967 Incipient instability in free convection laminar boundary layers. J. Fluid Mech. 30 (2), 225239.10.1017/S0022112067001405
Qureshi, Z. H. & Gebhart, B. 1978 Transition and transport in a buoyancy driven flow in water adjacent to a vertical uniform flux surface. Intl J. Heat Mass Transfer 21 (12), 14671479.10.1016/0017-9310(78)90003-0
Reed, H. L., Saric, W. S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28 (1), 389428.10.1146/annurev.fl.28.010196.002133
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34 (1), 291319.10.1146/annurev.fluid.34.082701.161921
Schetz, J. A. & Eichhorn, R. 1962 Unsteady natural convection in the vicinity of a doubly infinite vertical plate. J. Heat Transfer 84 (4), 334338.10.1115/1.3684386
Shen, S. F. 1961 Some considerations on the laminar stability of time-dependent basic flows. J. Aero. Sci. 28 (5), 397404.
Squire, H. B. 1933 On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. Lond. A 142 (847), 621628.10.1098/rspa.1933.0193
Szewczyk, A. A. 1962 Stability and transition of the free-convection layer along a vertical flat plate. Intl J. Heat Mass Transfer 5 (10), 903914.10.1016/0017-9310(62)90071-6
Williamson, N., Armfield, S. W. & Kirkpatrick, M. P. 2012 Transition to oscillatory flow in a differentially heated cavity with a conducting partition. J. Fluid Mech. 693, 93114.10.1017/jfm.2011.471
Williamson, N., Armfield, S. W., Lin, W. & Kirkpatrick, M. P. 2016 Stability and Nusselt number scaling for inclined differentially heated cavity flow. Intl J. Heat Mass Transfer 97, 787793.10.1016/j.ijheatmasstransfer.2016.02.053
Wu, X. & Cowley, S. J. 1995 On the nonlinear evolution of instability modes in unsteady shear layers: the Stokes layer as a paradigm. Q. J. Mech. Appl. Math. 48 (2), 159188.10.1093/qjmam/48.2.159
Xin, S. & Le Quéré, P. 2001 Linear stability analyses of natural convection flows in a differentially heated square cavity with conducting horizontal walls. Phys. Fluids 13 (9), 25292542.10.1063/1.1388054
Xin, S. & Le Quéré, P. 2012 Stability of two-dimensional (2D) natural convection flows in air-filled differentially heated cavities: 2D/3D disturbances. Fluid Dyn. Res. 44 (3), 031419.
Zhao, Y., Lei, C. & Patterson, J. C. 2017 The k-type and h-type transitions of natural convection boundary layers. J. Fluid Mech. 824, 352387.10.1017/jfm.2017.354
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Stability of a temporally evolving natural convection boundary layer on an isothermal wall

  • Junhao Ke (a1), N. Williamson (a1), S. W. Armfield (a1), G. D. McBain (a2) and S. E. Norris (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed