Skip to main content
    • Aa
    • Aa

Stability of columnar convection in a porous medium

  • Duncan R. Hewitt (a1), Jerome A. Neufeld (a1) (a2) (a3) and John R. Lister (a1)

Convection in a porous medium at high Rayleigh number $\mathit{Ra}$ exhibits a striking quasisteady columnar structure with a well-defined and $\mathit{Ra}$ -dependent horizontal scale. The mechanism that controls this scale is not currently understood. Motivated by this problem, the stability of a density-driven ‘heat-exchanger’ flow in a porous medium is investigated. The dimensionless flow comprises interleaving columns of horizontal wavenumber $k$ and amplitude $\widehat{A}$ that are driven by a steady balance between vertical advection of a background linear density stratification and horizontal diffusion between the columns. Stability is governed by the parameter $A= \widehat{A}\mathit{Ra}/ k$ . A Floquet analysis of the linear-stability problem in an unbounded two-dimensional domain shows that the flow is always unstable, and that the marginal-stability curve is independent of $A$ . The growth rate of the most unstable mode scales with ${A}^{4/ 9} $ for $A\gg 1$ , and the corresponding perturbation takes the form of vertically propagating pulses on the background columns. The physical mechanism behind the instability is investigated by an asymptotic analysis of the linear-stability problem. Direct numerical simulations show that nonlinear evolution of the instability ultimately results in a reduction of the horizontal wavenumber of the background flow. The results of the stability analysis are applied to the columnar flow in a porous Rayleigh–Bénard (Rayleigh–Darcy) cell at high $\mathit{Ra}$ , and a balance of the time scales for growth and propagation suggests that the flow is unstable for horizontal wavenumbers $k$ greater than $k\sim {\mathit{Ra}}^{5/ 14} $ as $\mathit{Ra}\rightarrow \infty $ . This stability criterion is consistent with hitherto unexplained numerical measurements of $k$ in a Rayleigh–Darcy cell.

Corresponding author
Email address for correspondence:
Hide All
G. Ahlers , S. Grossmann & D. Lohse 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.

S. Backhaus , K. Turitsyn & R. E. Ecke 2011 Convective instability and mass transport of diffusion layers in a hele-shaw geometry. Phys. Rev. Lett. 106, 104501.

D. N. Beaumont 1981 The stability of spatially periodic flows. J. Fluid Mech. 108, 461474.

P. Cheng 1978 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1105.

P. G. Drazin 2002 Introduction to Hydrodynamic Stability. Cambridge University Press.

A. C. Fowler 1985 The formation of freckles in binary alloys. IMA J. Appl. Maths 35, 159174.

X. Fu , L. Cueto-Felgueroso & R. Juanes 2013 Pattern formation and coarsening dynamics in three-dimensional convective mixing in porous media. Phil. Trans. R. Soc. A 371, 20120355.

M. D. Graham & P. H. Steen 1994 Plume formation and resonant bifurcations in porous-media convection. J. Fluid Mech. 272, 6789.

D. R. Hewitt , J. A. Neufeld & J. R. Lister 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108, 224503.

D. R. Hewitt , J. A. Neufeld & J. R. Lister 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.

J. J. Hidalgo , J. Fe , L. Cueto-Felgueroso & R. Juanes 2012 Scaling of convective mixing in porous media. Phys. Rev. Lett. 109, 264503.

J. Y. Holyer 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195207.

J. Y. Holyer 1984 The stability of long, steady, two-dimensional salt fingers. J. Fluid Mech. 147, 169185.

H. E. Huppert & J. S. Turner 1981 Double-diffusive convection. J. Fluid Mech. 106, 299329.

E. R. Lapwood 1948 Convection of a fluid in a porous medium. Math. Proc. Camb. Phil. Soc. 44, 508521.

J. A. Neufeld , M. A. Hesse , A. Riaz , M. A. Hallworth , H. A. Tchelepi & H. E. Huppert 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, 22404.

D. A. Nield & A. Bejan 2006 Convection in Porous media, 3rd edn. Springer.

F. M Orr Jr. 2009 Onshore geologic storage of ${\mathrm{CO} }_{2} $. Science 325, 16561658.

J. Otero , L. A. Dontcheva , H. Johnston , R. A. Worthing , A. Kurganov , G. Petrova & C. R. Doering 2004 High-Rayleigh-number convection in a fluid-saturated porous layer. J. Fluid Mech. 500, 263281.

G. S. H. Pau , J. B. Bell , K. Pruess , A. S. Almgren , M. J. Lijewski & K. Zhang 2010 High-resolution simulation and characterization of density-driven flow in ${\mathrm{CO} }_{2} $ storage in saline aquifers. Adv. Water Resour. 33, 443455.

T. Radko & D. P. Smith 2012 Equilibrium transport in double-diffusive convection. J. Fluid Mech. 692, 527.

A. C. Slim , M. M. Bandi , J. C. Miller & L. Mahadevan 2013 Dissolution-driven convection in a Hele–Shaw cell. Phys. Fluids 25, 024101.

M. E. Stern 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.

B. Wen , N. Dianati , E. Lunasin , G. P. Chini & C. R. Doering 2012 New upper bounds and reduced dynamical modelling for Rayleigh–Bénard convection in a fluid-saturated porous layer. Commun. Nonlinear Sci. Numer. Simul. 17, 21912199.

R. A. Wooding , S. W. Tyler , I. White & P. A. Anderson 1997 Convection in groundwater below an evapourating salt lake: 2. Evolution of fingers or plumes. Water Resour. Res. 33, 12191228.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 113 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.