Skip to main content Accessibility help
×
Home

Statistics and tensor analysis of polymer coil–stretch mechanism in turbulent drag reducing channel flow

  • Anselmo S. Pereira (a1), Gilmar Mompean (a1), Laurent Thais (a1) and Roney L. Thompson (a2)

Abstract

The polymer coil–stretch mechanism in turbulent drag reducing flows is analysed using direct numerical simulations of viscoelastic finitely extensible nonlinear elastic fluids with the Peterlin approximation. The study is carried out taking into account low and high drag reduction regimes. The polymer stretching and the alignment between the conformation tensor and other relevant entities are investigated using statistical and tensor analysis. The significant alignment between the former and the velocity fluctuations product tensor indicates that the initial polymer stretching due to the mean shear is increased by the flow stress fluctuations, providing a supplementary polymer extension. In addition, interactions between the turbulence and the polymer are evaluated from an instantaneous turbulent energy exchange perspective by considering streamwise work fluctuating terms in elliptical and hyperbolic flow regions separately. Near the wall, polymers not only release energy to the streaks, but also to the elliptical (or vortical) and hyperbolic (or extensional) structures. However, polymers can also be dragged around near-wall vortices, passing through hyperbolic regions and experiencing a significant straining within both these turbulent structures and storing their energy. Hence, polymers weaken elliptical and hyperbolic structures leading to a tendency toward relaminarization of the flow. Polymer release of energy occurs primarily in the streamwise direction, which is in agreement with the enhanced streamwise velocity fluctuation observed in drag reducing flows. A detailed polymer coil–stretch mechanism is provided.

Copyright

Corresponding author

Email address for correspondence: gilmar.mompean@polytech-lille.fr

References

Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.
Andrade, R. M., Pereira, A. S. & Soares, E. J. 2014 Drag increase at the very start of drag reducing flows in a rotating cylindrical double gap device. J. Non-Newtonian Fluid Mech. 212, 7379.
Armfield, S. W. & Street, R. L. 2000 Fractional step methods for the Navier–Stokes equations on non-staggered grids. ANZIAM J. 42(E), C134C156.
Bagheri, F., Mitra, D., Perlekar, P. & Brandt, L. 2012 Statistics of polymer extensions in turbulent channel flow. Phys. Rev. E 86, 056314.
Benzi, R., Angelis, E. D., L’vov, V. S. & Procaccia, I. 2005 Identification and calculation of the universal asymptote for drag reduction by polymers in wall-bounded turbulence. Phys. Rev. Lett. 95, 194502.
Bewersdorff, H. W. 1982 Effect of a centrally injected polymer thread on drag in pipe flow. Rheol. Acta 21, 587589.
Bewersdorff, H. W. & Singh, R. P. 1988 Rheological and drag reduction characteristics of xanthan gum solutions. Rheol. Acta 27, 617627.
Bird, R., Armstrong, R. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Kinetic Theory. Wiley.
Burger, E. D. & Chorn, L. G. 1980 Studies of drag reduction conducted over a broad range of pipeline conditions when flowing Prudhoe Bay crude oil. J. Rheol. 24, 603626.
Dallas, V., Vassilicos, J. C. & Hewitt, G. F. 2010 Strong polymer–turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E 82, 066303.
De Angelis, E., Casciola, C., L’vov, V. S., Pomyalov, A., Procaccia, I. & Tiberkevich, V. 2004 Drag reduction by a linear viscosity profile. Phys. Rev. E 70, 055301.
Dean, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME J. Fluids Engng 100, 215223.
Dimitropoulos, C. D., Dubief, Y., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow. Phys. Fluids 17, 14.
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.
Escudier, M. P., Nickson, A. & Poole, R. 2009 Turbulent flow of viscoelastic shear-thinning liquids through a rectangular duct: quantification of turbulence anisotropy. J. Non-Newtonian Fluid Mech. 160, 210.
Escudier, M. P., Presti, F. & Smith, S. 1999 Drag reduction in the turbulent pipe flow of polymers. J. Non-Newtonian Fluid Mech. 81, 197213.
Fabula, A. G. 1971 Fire-fighting benefits of polymeric friction reduction. Trans ASME J. Basic Engng 93, 453455.
Forrest, F. & Grierson, G. A. 1931 Friction losses in cast iron pipe carrying paper stock. Paper Trade J. 92, 3941.
Golda, J. 1986 Hydraulic transport of coal in pipes with drag reducing additives. Chem. Engng Commun. 45, 5367.
Greene, H. L., Mostardi, R. F. & Nokes, R. F. 1980 Effects of drag reducing polymers on initiation of atherosclerosis. Polym. Engng Sci. 20449.
Gyr, A. & Tsinober, T. 1995 On the rheological nature of drag reduction phenomena. J. Non-Newtonian Fluid Mech. 73, 153162.
Hershey, H. C. & Zakin, J. L. 1967 A molecular approach to predicting the onset of drag reduction in the turbulent flow of dilute polymer solutions. Chem. Engng Sci. 22, 184187.
Housiadas, K. D. & Beris, A. N. 2003 Polymer-induced drag reduction: effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15 (8), 23692384.
Housiadas, K. D. & Beris, A. N. 2004 Characteristic scales and drag reduction evaluation in turbulent channel flow of nonconstant viscosity viscoelastic fluids. Phys. Fluids 16, 15811586.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. In Center for Turbulence Research – Proceedings of Summer Program Report CTR-S88, pp. 193208. Stanford University.
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.
Joseph, D. D. 1990 Fluid Dynamics of Viscoelastic Liquids. Springer.
Kalashnikov, V. N. 1998 Dynamical similarity and dimensionless relations for turbulent drag reduction by polymer additives. J. Non-Newtonian Fluid Mech. 75, 209230.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Kim, K., Adrian, R. J., Balachandar, L. & Sureshkumar, R. 2008 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. Phys. Fluids 100, 134504.
Kim, K., Li, C.-F., Sureshkumar, R., Balachandar, L. & Adrian, R. J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.
Kravchenko, A. G., Choi, H. & Moin, P. 1993 On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids A 5, 33073309.
Lumley, J. L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 11, 367384.
L’vov, V. S., Pomyalov, A., Procaccia, I. & Tiberkevich, V. 2004 Drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett. 92, 244503.
Martins, R. S., Pereira, A. S., Mompean, G., Thais, L. & Thompson, R. L. 2016 An objective perspective for classic flow classification criteria. C. R. Méc. 344, 5259.
Merrill, E. W. & Horn, A. F. 1984 Scission of macromolecules in dilute solution: extensional and turbulent flows. Polym. Commun. 25, 144146.
Min, T., Yoo, J. Y., Choi, H. & Joseph, D. D. 2003 Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.
Moussa, T. & Tiu, C. 1994 Factors affecting polymer degradation in turbulent pipe flow. Chem. Engng Sci. 49, 16811692.
Mysels, K. J.1949 Flow of thickened fluids. U.S. Patent 2 Dec. 27 492, 173.
Orlandi, P. 1996 A tentative approach to the direct simulation of drag reduction by polymers. J. Non-Newtonian Fluid Mech. 60, 277301.
Paterson, R. W. & Abernathy, F. H. 1970 Turbulent flow drag reduction and degradation with dilute polymer solutions. J. Fluid Mech. 43, 689710.
Pereira, A. S., Andrade, R. M. & Soares, E. J. 2013 Drag reduction induced by flexible and rigid molecules in a turbulent flow into a rotating cylindrical double gap device: comparison between poly (ethylene oxide), polyacrylamide, and xanthan gum. J. Non-Newtonian Fluid Mech. 202, 7287.
Pereira, A. S., Mompean, G., Thais, L. & Soares, E. J. 2017 Transient aspects of drag reducing plane couette flows. J. Non-Newtonian Fluid Mech. 241, 6069.
Pereira, A. S. & Soares, E. J. 2012 Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device. J. Non-Newtonian Fluid Mech. 179, 922.
Peterlin, A. 1961 Streaming birefringence of soft linear macromolecules with finite chain length. Polymer 2, 257291.
Pinho, F. T. & Whitelaw, J. H. 1990 Flow of non-Newtonian fluids in a pipe. J. Non-Newtonian Fluid Mech. 34, 129144.
Ptasinski, P. K., Nieuwstadt, F. T., Van den Brule, B. H. A. A. & Hulsen, M. A. 2001 Experiments in turbulent pipe flow with polymer additives at maximum drag reduction. Turbul. Combust. 66, 159182.
Ryskin, G. 1987 Turbulent drag reduction by polymers: a quantitative theory. Phys. Rev. Lett. 59, 20592062.
Sellin, R. H. J., Hoyt, J. W., Poliert, J. & Scrivener, O. 1982 The effect of drag reducing additives on fluid flows and their industrial applications part II: present applications and future proposals. J. Hydraul Res. 20, 235292.
Seyer, F. A. & Metzner, A. B. 1969 Turbulence phenomena in drag reducing systems. AIChE J. 15, 426434.
Soares, E. J., Sandoval, G. A. B., Silveira, L., Pereira, A. S., Trevelin, R. & Thomaz, F. 2015 Loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes with imposed pressure. Phys. Fluids 27, 125105.
Sureshkumar, R. & Beris, A. N. 1995 Effect of artificial stress diffusivity on the stability of numerical calculations and the dynamics of time-dependent viscoelastic flows. J. Non-Newtonian Fluid Mech. 60, 5380.
Sureshkumar, R., Beris, A. N. & Handler, R. A. 1997 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743755.
Tabor, M. & de Gennes, P. G. 1986 A cascade theory of drag reduction. Europhys. Lett. 2, 519522.
Terrapon, V. E., Dubief, Y., Moin, P., Shaqfeh, E. S. G. & Lele, S. K. 2004 Simulated polymer stretch in a turbulent flow using brownian dynamics. J. Fluid Mech. 504, 6171.
Thais, L., Gatski, T. B. & Mompean, G. 2012 Some dynamical features of the turbulent flow of a viscoelastic fluid for reduced drag. J. Turbul. 13, 126.
Thais, L., Gatski, T. B. & Mompean, G. 2013 Analysis of polymer drag reduction mechanisms from energy budgets. Intl J. Heat Fluid Flow 43, 5261.
Thais, L., Tejada-Martinez, A., Gatski, T. B. & Mompean, G. 2011 A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput. Fluids 43, 134142.
Toms, B. A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the International Congress of Rheology, Holland, North-Holland, Amsterdam, Section II, pp. 135141. North-Holland.
den Toonder, J. M. J., Nieuwstadt, F. T. M. & Kuiken, G. D. C. 1995 The role of elongational viscosity in the mechanism of drag reduction by polymer additives. Appl. Sci. Res. 54, 95123.
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21, 625656.
Virk, P. S., Mickley, H. S. & Smith, K. A. 1967 The Toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech. 22, 2230.
Virk, P. S., Mickley, H. S. & Smith, K. A. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. Trans. ASME J. Appl. Mech. 37, 488493.
Warholic, M. D., Massah, H. & Hanratty, T. J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461472.
Wei, T. & Willmarth, W. W. 1992 Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows. J. Fluid Mech. 245, 619641.
White, C. M., Dubief, Y. & Klewicki, J. 2012 Re-examining the logarithmic dependence of the mean velocity distribution in polymer drag reduced wall-bounded flow. Phys. Fluids 24, 021701.
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.
White, C. M., Somandepalli, V. S. R. & Mungal, M. G. 2004 The turbulence structure of drag-reduced boundary layer flow. Exp. Fluids 36, 6269.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Statistics and tensor analysis of polymer coil–stretch mechanism in turbulent drag reducing channel flow

  • Anselmo S. Pereira (a1), Gilmar Mompean (a1), Laurent Thais (a1) and Roney L. Thompson (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed