Skip to main content Accessibility help
×
Home

Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices

  • Andreas Froitzheim (a1), Rodrigo Ezeta (a2), Sander G. Huisman (a2), Sebastian Merbold (a1), Chao Sun (a2) (a3), Detlef Lohse (a2) (a4) and Christoph Egbers (a1)...

Abstract

In this paper, we experimentally study the influence of large-scale Taylor rolls on the small-scale statistics and the flow organization in fully turbulent Taylor–Couette flow for Reynolds numbers up to $Re_{S}=3\times 10^{5}$ . The velocity field in the gap confined by coaxial and independently rotating cylinders at a radius ratio of $\unicode[STIX]{x1D702}=0.714$ is measured using planar particle image velocimetry in horizontal planes at different cylinder heights. Flow regions with and without prominent Taylor vortices are compared. We show that the local angular momentum transport (expressed in terms of a Nusselt number) mainly takes place in the regions of the vortex in- and outflow, where the radial and azimuthal velocity components are highly correlated. The efficient momentum transfer is reflected in intermittent bursts, which becomes visible in the exponential tails of the probability density functions of the local Nusselt number. In addition, by calculating azimuthal energy co-spectra, small-scale plumes are revealed to be the underlying structure of these bursts. These flow features are very similar to the one observed in Rayleigh–Bénard convection, which emphasizes the analogies of these systems. By performing a complex proper orthogonal decomposition, we remarkably detect azimuthally travelling waves superimposed on the turbulent Taylor vortices, not only in the classical but also in the ultimate regime. This very large-scale flow pattern, which is most pronounced at the axial location of the vortex centre, is similar to the well-known wavy Taylor vortex flow, which has comparable wave speeds, but much larger azimuthal wavenumbers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: christoph.egbers@b-tu.de

References

Hide All
Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Brauckmann, H. J. & Eckhardt, B. 2013 Intermittent boundary layers and torque maxima in Taylor–Couette flow. Phys. Rev. E 87, 033004.
Brauckmann, H. J., Eckhardt, B. & Schumacher, J. 2016b Heat transport in Rayleigh–Bénard convection and angular momentum transport in Taylor–Couette flow: a comparative study. Phil. Trans. R. Soc. A 375, 20160079.
Brauckmann, H. J., Salewski, M. & Eckhardt, B. 2016a Momentum transport in Taylor–Couette flow with vanishing curvature. J. Fluid Mech. 790, 419452.
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X. Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.
Chu, C. R., Parlange, M. B., Katul, G. G. & Albertson, J. D. 1996 Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour. Res. 32, 16811688.
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.
Dong, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.
Donnelly, R. J. 1991 Taylor–Couette flow: the early days. Phys. Today 44, 3239.
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.-Y., Richard, D. & Zahn, J.-P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.
Eckhardt, B., Grossmann, S. & Lohse, D. 2007a Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. Eur. Phys. Lett. 78(2), 24001.
Eckhardt, B., Grossmann, S. & Lohse, D. 2007b Fluxes and energy dissipation in thermal convection and shear flows. J. Fluid Mech. 581, 221250.
Emran, M. S. & Schumacher, J. 2008 Fine-scale statistics of temperature and its derivatives in convective turbulence. J. Fluid Mech. 611, 1334.
Ezeta, R., Huisman, S. G., Sun, C. & Lohse, D. 2017 Turbulence strength in ultimate Taylor–Couette turbulence. J. Fluid Mech. 836, 397412.
Fardin, M. A., Perge, C. & Taberlet, N. 2014 The hydrogen atom of fluid dynamics – introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt. 10, 35233535.
Froitzheim, A., Merbold, S. & Egbers, C. 2017 Velocity profiles, flow structures and scalings in a wide-gap turbulent Taylor–Couette flow. J. Fluid Mech. 831, 330357.
van Gils, D. P. M., Huisman, S. G., Bruggert, G.-W., Sun, C. & Lohse, D. 2011 Torque scaling in turbulent Taylor–Couette flow with co- and counterrotating cylinders. Phys. Rev. Lett. 106, 024502.
van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C. & Lohse, D. 2012 Optimal Taylor–Couette turbulence. J. Fluid Mech. 706, 118149.
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.
Harlander, U., von Larcher, T., Wang, Y. & Egbers, C. 2011 PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus. Exp. Fluids 51, 3749.
van Hout, R. & Katz, J. 2011 Measurements of mean flow and turbulence characteristics in high-Reynolds number counter-rotating Taylor–Couette flow. Phys. Fluids 23, 105102.
Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D. 2012 Ultimate turbulent Taylor–Couette turbulence. Phys. Rev. Lett. 108, 024501.
Huisman, S. G., Lohse, D. & Sun, C. 2013a Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E 88, 063001.
Huisman, S. G., Scharnowski, S., Cierpka, C., Kähler, C., Lohse, D. & Sun, C. 2013b Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110, 264501.
Huisman, S. G., van der Veen, R. C. A., Bruggert, G.-W., Lohse, D. & Sun, C. 2015 The boiling Twente Taylor–Couette (BTTC) facility: temperature controlled turbulent flow between independently rotating, coaxial cylinders. Rev. Sci. Instrum. 86, 065108.
Huisman, S. G., van der Veen, R. C. A., Sun, C. & Lohse, D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.
Jimenez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.
King, G. P., Li, Y., Lee, W. & Swinney, H. L. 1984 Wave speeds in wavy Taylor-vortex flow. J. Fluid Mech. 141, 365390.
Lathrop, D. P., Fineberg, J. & Swinney, H. S. 1992 Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.
Lewis, G. S. & Swinney, H. L. 1999 Velocity structure functions, scaling and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.
Marple, S. L. 1999 Computing the discrete-time analytic signal via fft. IEEE Trans. Signal Process. 47 (9), 26002603.
Martínez-Arias, B., Peixinho, J., Crumeyrolle, O. & Mutabazi, I. 2014 Effect of the number of vortices on the torque scaling in Taylor–Couette flow. J. Fluid Mech. 748, 756767.
Marusic, I. & Monty, J. P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1), 4974.
Merbold, S., Brauckmann, H. J. & Egbers, C. 2013 Torque measurements and numerical determination in differentially rotating wide gap Taylor–Couette flow. Phys. Rev. E 87, 023014.
Merbold, S., Froitzheim, A. & Egbers, C. 2014 Flow pattern and angular motion transport in a wide gap Taylor–Couette flow. In Schriftenreihe aus dem Institut für Strömungsmechanik, Strömungstechnische Tagung, vol. 10. Dresden.
Ostilla, R., Stevens, R. J. A. M., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.
Ostilla-Mónico, R., Huisman, S. G., Janninik, T. J. G., van Gils, D. P. M., Verzicco, R., Grossmann, S. & Lohse, D. 2014a Optimal Taylor–Couette flow: radius ratio dependence. J. Fluid Mech. 747, 129.
Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. 2014b Boundary layer dynamics at the transition between the classical and ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.
Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. 2014c Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D. 2016 The near-wall region of highly turbulent Taylor–Couette flow. J. Fluid Mech. 788, 95117.
Pandey, A., Scheel, J. D. & Schumacher, J. 2018 Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9, 2118.
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.
Pfeffer, R. L., Ahlquist, J., Kung, R., Chang, Y. & Li, G. 1990 A study of baroclinic wave behaviour over bottom topography using complex principal component analysis of experimental data. Atmos. Sci. 47, 6781.
Procaccia, I., Ching, E. S. C., Constantin, P., Kadanoff, L. P., Libchaber, A. & Wu, X. Z. 1991 Transition to convective turbulence: the role of thermal plumes. Phys. Rev. A 44, 80918102.
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004 Measurements of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. 70, 026308.
Shishkina, O. & Wagner, C. 2007 Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys. Fluids 19, 085107.
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Stevens, R. J. A. M., Blass, A., Zhu, X., Verzicco, R. & Lohse, D. 2018 Turbulent thermal superstructures in Rayleigh–Bénard convection. Phys. Rev. Fluids 3, 041501.
Suanto, R. D., Zheng, Q. & Yan, X.-H. 1998 Complex singular value decomposition analysis of equatorial waves in the pacific observed by topex/poseidon altimeter. J. Atmos. Ocean. Technol. 15, 764774.
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA 55 (12), 40134041.
Takeda, Y. 1999 Quasi-periodic state and transition to turbulence in a rotating Couette system. J. Fluid Mech. 389, 8199.
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. 223, 289343.
Thoroddsen, S. T. & van Atta, C. W. 1992 Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech. 244, 547566.
Tokgoz, S., Elsinga, G. E., Delfos, R. & Westerweel, J. 2011 Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow. J. Phys.: Conf. Ser. 318, 082018.
van der Veen, R. C. A., Huisman, S. G., Dung, O.-Y., Tang, H. L., Sun, C. & Lohse, D. 2016a Exploring the phase space of multiple states in highly turbulent Taylor–Couette flow. Phys. Rev. Fluids 1, 024401.
van der Veen, R. C. A., Huisman, S. G., Merbold, S., Harlander, U., Egbers, C., Lohse, D. & Sun, C. 2016b Taylor–Couette turbulence at radius ratio 0.5: scaling, flow structures and plumes. J. Fluid Mech. 799, 334351.
Walden, R. W. & Donelly, R. J. 1979 Reemergent order of chaotic circular Couette flow. Phys. Rev. Lett. 42, 301304.
Wang, L., Olsen, M. G., Dennis, R. & Vigil, R. D. 2005 Reappearance of azimuthal waves in turbulent Taylor–Couette flow at large aspect ratio. Chem. Engng Sci. 60, 55555568.
Wendt, F. 1933 Turbulente strömungen zwischen zwei rotierenden konaxialen Zylindern. Ing.-Arch. 4, 577595.
Yakhot, V. 1989 Probability distributions in high-Rayleigh number Bénard convection. Phys. Rev. Lett. 63, 19651967.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices

  • Andreas Froitzheim (a1), Rodrigo Ezeta (a2), Sander G. Huisman (a2), Sebastian Merbold (a1), Chao Sun (a2) (a3), Detlef Lohse (a2) (a4) and Christoph Egbers (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed