Skip to main content
×
×
Home

Steady water waves with vorticity: an analysis of the dispersion equation

  • V. Kozlov (a1), N. Kuznetsov (a2) and E. Lokharu (a1)
Abstract

Two-dimensional steady gravity waves with vorticity are considered on water of finite depth. The dispersion equation is analysed for general vorticity distributions, but under assumptions valid only for unidirectional shear flows. It is shown that for these flows (i) the general dispersion equation is equivalent to the Sturm–Liouville problem considered by Constantin & Strauss (Commun. Pure Appl. Math., vol. 57, 2004, pp. 481–527; Arch. Rat. Mech. Anal., vol. 202, 2011, pp. 133–175), (ii) the condition guaranteeing bifurcation of Stokes waves with constant wavelength is fulfilled. Moreover, a necessary and sufficient condition that the Sturm–Liouville problem mentioned in (i) has an eigenvalue is obtained.

Copyright
Corresponding author
Email address for correspondence: nikolay.g.kuznetsov@gmail.com
References
Hide All
Benjamin, T. B. 1995 Verification of the Benjamin–Lighthill conjecture about steady water waves. J. Fluid Mech. 295, 337356.
Coddington, E. A. & Levinson, N. 1955 Theory of Ordinary Differential Equations. McGraw-Hill.
Constantin, A. 2012 Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Commun. Pure Appl. Anal. 11, 13971406.
Constantin, A. & Strauss, W. 2004 Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57, 481527; (see also C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 797–800).
Constantin, A. & Strauss, W. 2011 Periodic travelling gravity water waves with discontinuous vorticity. Arch. Rat. Mech. Anal. 202, 133175.
Constantin, A. & Varvaruca, E. 2011 Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Rat. Mech. Anal. 199, 3367.
Crandall, M. & Rabinowitz, P. 1971 Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321340.
Doole, S. H. 1998 The pressure head and flowforce parameter space for waves with constant vorticity. Q. J. Mech. Appl. Maths 51, 6171.
Dubreil-Jacotin, M.-L. 1934 Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl. 13, 217291.
Ehrnström, M., Escher, J. & Villari, G. 2012 Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14, 407419.
Ehrnström, M., Escher, J. & Wahlén, E. 2011 Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43, 14361456.
Henry, D. 2013a Steady periodic waves bifurcating for fixed-depth rotational flows. Q. Appl. Maths 71, 455487.
Henry, D. 2013b Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface. Nonlinear Anal. Real World Appl. 14, 10341043.
Keady, G. & Norbury, J. 1978 Waves and conjugate streams with vorticity. Mathematika 25, 129150.
Kozlov, V. & Kuznetsov, N. 2011 Steady free-surface vortical flows parallel to the horizontal bottom. Q. J. Mech. Appl. Maths 64, 371399.
Kozlov, V. & Kuznetsov, N. 2014 Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents. Arch. Rat. Mech. Math. Anal. (submitted). Preprint available online at http://arXiv.org/abs/1207.5181.
Lavrentiev, M. & Shabat, B. 1980 Effets Hydrodynamiques et Modèles Mathématiques. Mir Publishers.
Martin, C. 2014 Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete Continuous Dyn. Syst. Ser. A 34, 31093123.
Martin, C. & Matioc, B.-V. 2014a Existence of capillary–gravity water waves with piecewise constant vorticity. J. Differ. Equ. 256, 30863114.
Martin, C. & Matioc, B.-V. 2014b Steady periodic water waves with unbounded vorticity: equivalent formulations and existence results. J. Nonlinear Sci.; doi:10.1007/s00332-014-9201-1.
Martin, C. & Matioc, B.-V. 2014c Capillary–gravity water waves with discontinuous vorticity: existence and regularity results. Commun. Math. Phys.; doi:10.1007/s00220-014-1918-z.
Strauss, W. 2010 Steady water waves. Bull. Am. Math. Soc. 47, 671694.
Swan, C., Cummins, I. & James, R. 2001 An experimental study of two-dimensional surface water waves propagating in depth-varying currents. J. Fluid Mech. 428, 273304.
Thomas, G. P. 1990 Wave–current interactions: an experimental and numerical study. J. Fluid Mech. 216, 505536.
Wahlén, E. 2006 Steady periodic capillary–gravity waves with vorticity. SIAM J. Math. Anal. 38, 921943.
Wahlén, E. 2009 Steady water waves with a critical layer. J. Differ. Equ. 246, 24682483.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed