Skip to main content
×
Home
    • Aa
    • Aa

Stochastic bifurcation analysis of Rayleigh–Bénard convection

  • DANIELE VENTURI (a1), XIAOLIANG WAN (a2) and GEORGE EM KARNIADAKIS (a3)
Abstract

Stochastic bifurcations and stability of natural convection within two-dimensional square enclosures are investigated by different stochastic modelling approaches. Deterministic stability analysis is carried out first to obtain steady-state solutions and primary bifurcations. It is found that multiple stable steady states coexist, in agreement with recent results, within specific ranges of Rayleigh number. Stochastic simulations are then conducted around bifurcation points and transitional regimes. The influence of random initial flow states on the development of supercritical convection patterns is also investigated. It is found that a multi-element polynomial chaos method captures accurately the onset of convective instability as well as multiple convection patterns corresponding to random initial flow states.

Copyright
Corresponding author
Email address for correspondence: gk@dam.brown.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. Acharjee & N. Zabaras 2006 A concurrent model reduction approach on spatial and random domains for the solution of stochastic PDEs. Intl J. Numer. Meth. Engng. 66 (12), 19341954.

G. Ahlers , C. W. Meyer & D. S. Cannell 1989 Deterministic and stochastic effects near the convective onset. J. Stat. Phys. 54 (5/6), 11211131.

E. L. Allgower & K. Georg 1990 Numerical Continuation Methods: An Introduction. Springer.

L. S. De Alves , R. M. Cotta & J. Pontes 2002 Stability analysis of natural convection in porous cavities though integral transforms. Intl J. Heat Mass Transfer 45, 11851195.

B. W. Asokan & N. Zabaras 2005 Using stochastic analysis to capture unstable equilibrium in natural convection. J. Comput. Phys. 208, 134153.

F. Bousset , D. V. Lyubimov & G. A. Sedel’nikov 2008 Three-dimensional convection regimes in a cubical cavity. Fluid Dyn. 43 (1), 18.

I. Catton 1972 The effect of insulating vertical walls on the onset of motion in a fluid heated from below. Intl J. Heat Mass Transfer 15 (4), 665672.

A. Dhooge , W. Govaerts & Yu. A. Kuznetsov 2003 MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141164.

A. Doostan , R. G. Ghanem & J. Red-Horse 2007 Stochastic model reduction for chaos representation. Comput. Meth. Appl. Mech. Engng 196, 39513966.

E. Figueira & R. M. Cotta 1996 Benchmark results for internal forced convection through integral transformation. Intl Commun. Heat Mass Transfer 23 (7), 10191029.

G. S. Fishman 1996 Monte Carlo: Concepts, Algorithms and Applications. Springer.

B. Ganapathysubramanian & N. Zabaras 2007 Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225 (1), 652685.

A. Yu. Gelfgat 1999 Different modes of Rayleigh–Bénard instability in two and three-dimensional rectangular enclosures. J. Comput. Phys. 156, 300324.

A. Yu. Gelfgat & P. Z. Bar-Yoseph 2004 Multiple solutions and stability of confined convective and swirling fows – a continuing challenge. Intl J. Numer. Meth. Heat Fluid Flow 14 (2), 213241.

P. E. Hydon 2000 How to construct the discrete symmetries of partial differential equations. Eur. J. Appl. Math. 11, 515527.

R. E. Kelly & D. Pal 1978 Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation. J. Fluid Mech. 86 (3), 433456.

K. R. Kirchartz & H. Oertel Jr 1988 Three-dimensional thermal cellular convection in rectangular boxes. J. Fluid Mech. 192, 249286.

O. Le Maître , H. N. Njam , R. G. Ghanem & O. M. Knio 2004 Uncertainty propagation using Wiener–Haar expansions. J. Comput. Phys. 197, 2857.

O. Le Maître , M. T. Reagan , B. Debusschere , H. N. Najm , R. G. Ghanem & O. M. Knio 2005 Natural convection in a closed cavity under stochastic non-Boussinesq conditions. SIAM J. Sci. Comput. 26 (2), 375394.

M. A. Leal , H. A. Machado & R. M. Cotta 2000 Integral transform solutions of transient natural convection in enclosures with variable fluid properties. Intl J. Heat Mass Transfer 43, 39773990.

J. M. Luijkx & J. K. Platten 1981 On the onset of free convection in a rectangular channel. J. Non-Equilib. Thermodyn. 6, 141.

X. Ma & N. Zabaras 2009 An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228, 30843113.

J. Pallares , M. P. Arroyo , F. X. Grau & F. Giralt 2001 Experimental laminar Rayleigh–Bénard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers. Exp. Fluids 31 (2), 208218.

J. Pallares , I. Cuesta , F. X. Grau & F. Giralt 1996 Natural convection in a cubical cavity heated from below at low Rayleigh numbers. Intl J. Heat Mass Transfer 39 (15), 32333247.

J. Pallares , F. X. Grau & F. Giralt 1999 Flow transitions in laminar Rayleigh–Bénard convection in a cubical cavity at moderate Rayleigh numbers. Intl J. Heat Mass Transfer 42, 753769.

D. Puigjaner , J. Herrero , F. Giralt & C. Simó 2004 Stability analysis of the flow in a cubical cavity heated from below. Phys. Fluids 16 (10), 36393654.

D. Puigjaner , J. Herrero , C. Simó & F. Giralt 2008 Bifurcation analysis of steady Rayleigh–Bénard convection in a cubical cavity with conducting sidewalls. J. Fluid Mech. 598, 393427.

K. Stork & U. Müller 1972 Convection in boxes: experiments. J. Fluid Mech. 54 (4), 599611.

G. Vekstein 2004 Energy principle for the onset of convection. Eur. J. Phys. 25, 667673.

D. Venturi 2006 On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate. J. Fluid Mech. 559, 215254.

D. Venturi , X. Wan & G. E. Karniadakis 2008 Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder. J. Fluid Mech. 606, 339367.

X. Wan & G. E. Karniadakis 2005 An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209 (2), 617642.

X. Wan & G. E. Karniadakis 2006 aMulti-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28 (3), 901928.

X. Wan & G. E. Karniadakis 2006 b Stochastic heat transfer enhancement in a grooved channel. J. Fluid Mech. 565, 255278.

D. Xiu & G. E. Karniadakis 2002 The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2), 619644.

D. Xiu & G. E. Karniadakis 2003 modelling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137167.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 167 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2017. This data will be updated every 24 hours.