Skip to main content

Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder


We present a new compact expansion of a random flow field into stochastic spatial modes, hence extending the proper orthogonal decomposition (POD) to noisy (non-coherent) flows. As a prototype problem, we consider unsteady laminar flow past a circular cylinder subject to random inflow characterized as a stationary Gaussian process. We first obtain random snapshots from full stochastic simulations (based on polynomial chaos representations), and subsequently extract a small number of deterministic modes and corresponding stochastic modes by solving a temporal eigenvalue problem. Finally, we determine optimal sets of random projections for the stochastic Navier–Stokes equations, and construct reduced-order stochastic Galerkin models. We show that the number of stochastic modes required in the reconstruction does not directly depend on the dimensionality of the flow system. The framework we propose is general and it may also be useful in analysing turbulent flows, e.g. in quantifying the statistics of energy exchange between coherent modes.

Corresponding author
Author to whom correspondence should be addressed:
Hide All
Acharjee, S. & Zabaras, N. 2006 A concurrent model reduction approach on spatial and random domains for the solution of stochastic PDEs. Intl J. Numer. Anal. Model. 66 (12), 19341954.
Amit, D. J. & Martín-Mayor, V. 2005 Field Theory, The Renormalization Group and Critical Phenomena, 3rd Edn.World Scientific.
Aubry, N. 1991 On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2, 339352.
Aubry, N., Guyonnet, R. & Lima, R. 1995 Spatio-temporal symmetries and bifurcations via bi-orthogonal decomposition. J. Nonlinear Sci. 2, 183215.
Belkin, M. & Niyogi, P. 2003 Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 13731396.
Blanchard, G., Bousquet, O. & Zwald, L. 2007 Statistical properties of kernel principal component analysis. Mach. Learn. 66, 259294.
Bodner, S. E. 1969 Turbulence theory with a time-varying Wiener–Hermite basis. Phys. Fluids 12 (1), 3338.
Burkardt, J. & Webster, C. 2007 Reduced order modelling of some nonlinear stochastic partial differential equations. Intl J. Numer. Anal. Model. 4 (3–4), 368391.
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids 3 (10), 23372354.
Delville, J., Ukeiley, L., Cordier, L., Bonnet, J. P. & Glauser, M. 2003 Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 497, 335363.
Doostan, A., Ghanem, R. & Red-Horse, J. 2007 Stochastic model reduction for chaos representation. Comput. Meth. Appl. Mech. Engng 196, 39513966.
Dozier, R. B. & Silverstein, J. W. 2007 On the empirical distribution of eigenvalues of large dimensional information plus-noise type matrices. J. Multivariate Anal. 98 (4), 678694.
Everson, R. M. & Roberts, S. J. 2000 Inferring the eigenvalues of covariance matrices from limited, noisy data. IEEE Trans. Sig. Process. 48 (7), 20832091.
Gerstner, T. & Griebel, M. 1998 Numerical integration using sparse grids. Numer. Algorithms 18 (3–4), 209232.
Ghanem, R. G. & Spanos, P. D. 1998 Stochastic Finite Elements: A Spectral Approach. Springer.
Gordeyev, S. V. & Thomas, F. O. 2000 Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145194.
Hachem, W., Loubaton, P. & Najim, J. 2006 On the empirical distribution of eigenvalues of a Gram matrix with a given variance profile. Ann. l'Inst. Henri Poincaré (B), Probability Statist. 42 (6), 649670.
Ham, J., Lee, D. D., Mika, S. & Scholköpf, B. 2003 A kernel view of the dimensionality reduction of manifolds. Tech. Rep. TR-110. Max Plank Institute for Biological Cybernetics.
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
Hoyle, D. C. & Rattray, M. 2004 A statistical mechanics analysis of Gram matrix eigenvalue spectra. In Learning Theory, 17th Annual Conf. on Learning Theory, COLT 2004, Banff, Canada, July 1–4, 2004, Proc. (ed. Shawe-Taylor, J. & Singer, Y.), pp. 579–593. Springer.
Jenssen, R., Eltoft, T., Girolami, M. & Erdogmus, D. 2007 Kernel maximum entropy data transformation and an enhanced spectral clustering algorithm. In Advances in Neural Information Processing Systems (NIPS) 19, pp. 633640. MIT Press.
Kamiński, M. & Carey, G. F. 2005 Stochastic perturbation-based finite element approach to fluid flow problems. Int. J. Numer. Meth. Heat Fluid FLow 15 (7), 671697.
Karniadakis, G. E. & Sherwin, S. 2005 Spectral/hp Element Methods for CFD, 2nd Edn.Oxford University Press.
Kato, T. 1995 Perturbation Ttheory for Linear Operators, 4th Edn.Springe.
Lee, C. P., Meecham, W. C. & Hogge, H. D. 1982 Application of the Wiener–Hermite expansion to turbulence of moderate Reynolds number. Phys. Fluids 25 (8), 13221327.
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic.
Ma, X., Karamanos, G. S. & Karniadakis, G. E. 2000 Dynamics and low-dimensionality of turbulent near-wake. J. Fluid Mech. 410, 2965.
Ma, X., Karniadakis, G. E., Park, H. & Gharib, M. 2003 DPIV-driven simulation: a new computational paradigm. Proc. R. Soc. Lond. A 459, 547565.
Meecham, W. C. & Jeng, D. T. 1968 Use of the Wiener–Hermite expansion for nearly normal turbulence. J. Fluid Mech. 32 (2), 225249.
Meecham, W. C. & Siegel, A. 1964 Wiener–Hermite expansion in model turbulence at large Reynolds numbers. Phys. Fluids 7 (8), 11781190.
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R., Papas, P. & Monkiewitz, P. A. 2005 The need of a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.
Novak, E. & Ritter, K. 1996 High-dimensional integration of smooth functions over cubes. Numer. Math. 75, 7997.
Novak, E. & Ritter, K. 1999 Simple cubature formulas with high polynomial exactness. Constructive Approximation 15, 499522.
Paiva, A. R. C., Xu, J. & Principe, J. C. 2006 Kernel principal components are maximum entropy projections. In Proc. 6th Intl Conf. on Independent Component Analysis and Blind Signal Separation (ICA), Charleston, SC, USA, pp. 846–853.
Rempfer, D. 2003 Low-dimensional modelling and numerical simulation of transition in simple shear flows. Annu. Rev. Fluid. Mech. 35, 229265.
Rényi, A. 1961 On measures of information and entropy. In Proc. 4th Berkeley Symposium on Mathematics, Statistics and Probability.
Saul, K. L. & Roweis, S. T. 2003 Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Machine Learning Res. 4, 119155.
Scholköpf, B. & Smola, A. J. 2002 Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press.
Scholköpf, B., Smola, A. J. & Müller, K. R. 1998 Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 12991319.
Segall, A. & Kailath, T. 1976 Orthogonal functionals of independent-increment processes. IEEE Trans. Inf. Theory 22 (3), 287298.
Sengupta, M. & Mitra, P. P. 1999 Distribution of singular values of some random matrices. Phys. Rev. E 60, 33893392.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures: 1, 2, 3. Q. Appl. Maths. 45 (3), 561590.
Tenenbaum, J. B., de Silva, V. & Langford, J. C. 2000 A global geometric framework for nonlinear dimensionality reduction. Science 290, 23192323.
Venturi, D. 2006 On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate. J. Fluid Mech. 559, 215254.
Wan, X. & Karniadakis, G. E. 2006 a Long term behavior of polynomial chaos in stochastic flow simulations. Comput. Meth. Appl. Mech. Engng 195, 55825596.
Wan, X. & Karniadakis, G. E. 2006 b Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28 (3), 901928.
Webster, C. 2007 Sparse collocation techniques for the numerical solution of stochastic partial differential equations. PhD thesis, The Florida State University.
Weinberger, K. Q. & Saul, L. K. 2006 Unsupervised learning of image manifolds by semidefinite programming. Intl J. Computer Vision 70 (1), 7790.
Weinberger, K. Q., Sha, F. & Saul, L. K. 2004 Learning a kernel matrix for nonlinear dimensionality reduction. In Proc. 21st Int Conf. on Machine Learning, Banff, Alberta, Canada, p. 106.
Wiener, N. 1966 Nonliner Problems in Random Theory. MIT Press.
Xiu, D. & Karniadakis, G. E. 2002 The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2), 619644.
Xiu, D. & Karniadakis, G. E. 2003 Modelling uncertainty in flow simulations via generalized polynomial chaos. J. Comuput. Phys. 187, 137167.
Zdravkovich, M. M. 1997 Flow around Circular Cylinders, vol. 1,2. Oxford Univ. Press.
Zinn-Justin, J. 2002 Quantum Field Theory and Critical Phenomena, 4th Edn.Oxford University Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 200 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.