Skip to main content
×
Home
    • Aa
    • Aa

Stokes flow near the contact line of an evaporating drop

  • Hanneke Gelderblom (a1), Oscar Bloemen (a1) and Jacco H. Snoeijer (a1)
Abstract
Abstract

The evaporation of sessile drops in quiescent air is usually governed by vapour diffusion. For contact angles below , the evaporative flux from the droplet tends to diverge in the vicinity of the contact line. Therefore, the description of the flow inside an evaporating drop has remained a challenge. Here, we focus on the asymptotic behaviour near the pinned contact line, by analytically solving the Stokes equations in a wedge geometry of arbitrary contact angle. The flow field is described by similarity solutions, with exponents that match the singular boundary condition due to evaporation. We demonstrate that there are three contributions to the flow in a wedge: the evaporative flux, the downward motion of the liquid–air interface and the eigenmode solution which fulfils the homogeneous boundary conditions. Below a critical contact angle of , the evaporative flux solution will dominate, while above this angle the eigenmode solution dominates. We demonstrate that for small contact angles, the velocity field is very accurately described by the lubrication approximation. For larger contact angles, the flow separates into regions where the flow is reversing towards the drop centre.

Copyright
Corresponding author
Email address for correspondence: h.gelderblom@tnw.utwente.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. D. Anderson & S. Davis 1995 The spreading of volatile liquid droplets on heated surfaces. Phys. Fluids 7 (2), 248265.

2. G. Berteloot , C. T. Pham , A. Daerr , F. Lequeux & L. Limat 2008 Evaporation-induced flow near a contact line: consequences on coating and contact angle. Europhys. Lett. 83, 14003.

3. T. P. Bigioni , X. M. Lin , T. T. Nguyen , E. I. Corwin , T. A. Witten & H. M. Jaeger 2006 Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature Mater. 5 (4), 265270.

4. H. Bodiguel & J. Leng 2010 Imaging the drying of a colloidal suspension. Soft Matt. 6 (21), 54515460.

7. A. M. Cazabat & G. Guéna 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6 (12), 25912612.

8. P. Colinet & A. Rednikov 2011 On integrable singularities and apparent contact angles within a classical paradigm. Eur. Phys. J. Spec. Top. 197 (1), 89113.

10. R. D. Deegan , O. Bakajin , T. F. Dupont , G. Huber , S. R. Nagel & T. A. Witten 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827828.

11. R. D. Deegan , O. Bakajin , T. F. Dupont , G. Huber , S. R. Nagel & T. A. Witten 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62 (1), 756765.

12. E. R. Dufresne , E. I. Corwin , N. A. Greenblatt , J. Ashmore , D. Y. Wang , A. D. Dinsmore , J. X. Cheng , X. S. Xie , J. W. Hutchinson & D. A. Weitz 2003 Flow and fracture in drying nanoparticle suspensions. Phys. Rev. Lett. 91 (22), 224501.

13. J. Eggers & L. M. Pismen 2010 Non-local description of evaporating drops. Phys. Fluids 22 (11), 112101.

14. H. B. Eral , D. M. Augustine , M. H. G. Duits & F. Mugele 2011 Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting. Soft Matt. 7, 15.

15. B. J. Fischer 2002 Particle convection in an evaporating colloidal droplet. Langmuir 18, 6067.

16. H. Gelderblom , A. G. Marín , H. Nair , A. van Housselt , L. Lefferts , J. H. Snoeijer & D. Lohse 2011 How water droplets evaporate on a superhydrophobic substrate. Phys. Rev. E 83 (2), 026306.

17. G. Guéna , C. Poulard & A. M. Cazabat 2007 The leading edge of evaporating droplets. J. Colloid Interface Sci. 312 (1), 164171.

18. B. Haut & P. Colinet 2005 Surface-tension-driven instabilities of a pure liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 285 (1), 296305.

19. H. Hu & R. G. Larson 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.

20. H. Hu & R. G. Larson 2005 Analysis of the microfluidic flow in an evaporating sessile droplet. Langmuir 21 (9), 39633971.

21. H. Hu & R. G. Larson 2006 Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110 (14), 70907094.

22. C. Huh & L. E. Scriven 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.

23. A. G. Marín , H. Gelderblom , D. Lohse & J. H. Snoeijer 2011 Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107, 085502.

24. H. Masoud & J. D. Felske 2009 Analytical solution for Stokes flow inside an evaporating drop: spherical and cylindrical cap shapes. Phys. Fluids 21, 042102.

29. A. J. Petsi & V. N. Burganos 2008 Stokes flow inside an evaporating liquid line for any contact angle. Phys. Rev. E 78, 036324.

30. C. T. Pham , G. Berteloot , F. Lequeux & L. Limat 2010 Dynamics of complete wetting liquid under evaporation. Europhys. Lett. 92 (5), 54005.

31. Y. O. Popov 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.

32. C. Poulard , G. Guena , A. M. Cazabat , A. Boudaoud & M. Ben Amar 2005 Rescaling the dynamics of evaporating drops. Langmuir 21 (18), 82268233.

33. W. D. Ristenpart , P. G. Kim , C. Domingues , J. Wan & H. A. Stone 2007 Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99 (23), 234502.

34. S. Semenov , V. M. Starov , M. G. Velarde & R. G. Rubio 2011 Droplets evaporation: problems and solutions. Eur. Phys. J. Spec. Top. 197 (1), 265278.

35. B. Sobac & D. Brutin 2011 Triple-line behaviour and wettability controlled by nanocoated substrates: influence on sessile drop evaporation. Langmuir 27 (24), 1499915007.

36. K. P. Velikov 2002 Layer-by-layer growth of binary colloidal crystals. Science 296 (5565), 106109.

37. P. J. Yunker , T. Still , M. A. Lohr & A. G. Yodh 2011 Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476 (7360), 308311.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 62 *
Loading metrics...

Abstract views

Total abstract views: 197 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th June 2017. This data will be updated every 24 hours.