Asmolov, E. S., Belyaev, A. V. & Vinogradova, O. I.
2011
Drag force on a sphere moving toward an anisotropic superhydrophobic plane. Phys. Rev. E
84 (2), 026330.

Belyaev, A. V. & Vinogradova, O. I.
2010a
Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech.
652, 489–499.10.1017/S0022112010000741

Belyaev, A. V. & Vinogradova, O. I.
2010b
Hydrodynamic interaction with super-hydrophobic surfaces. Soft Matt.
6 (18), 4563–4570.10.1039/c0sm00205d

Chastel, T. & Mongruel, A.
2016
Squeeze flow between a sphere and a textured wall. Phys. Fluids
28 (2), 023301.

Choi, C.-H. & Kim, C.-J.
2006
Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett.
96 (6), 066001.

Cottin-Bizonne, C., Barentin, C., Charlaix, É., Bocquet, L. & Barrat, J.-L.
2004
Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E
15 (4), 427–438.

Davis, A. M. J., Kezirian, M. T. & Brenner, H.
1994
On the Stokes–Einstein model of surface diffusion along solid surfaces: slip boundary conditions. J. Colloid Interface Sci.
165 (1), 129–140.

Davis, S. H.
2017
The importance of being thin. J. Engng Math.
105 (1), 3–30.

Feuillebois, F., Bazant, M. Z. & Vinogradova, O. I.
2009
Effective slip over superhydrophobic surfaces in thin channels. Phys. Rev. Lett.
102 (2), 026001.10.1103/PhysRevLett.102.026001

Happel, J. & Brenner, H.
1965
Low Reynolds Number Hydrodynamics. Prentice-Hall.

Jeffrey, D. J. & Onishi, Y.
1981
The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Math.
34 (2), 129–137.

Kaynan, U. & Yariv, E.
2017
Stokes resistance of a cylinder near a slippery wall. Phys. Rev. Fluids
2 (10), 104103.

Kirk, T. L., Hodes, M. & Papageorgiou, D. T.
2017
Nusselt numbers for Poiseuille flow over isoflux parallel ridges accounting for meniscus curvature. J. Fluid Mech.
811, 315–349.

Lauga, E. & Stone, H. A.
2003
Effective slip in pressure-driven Stokes flow. J. Fluid Mech.
489, 55–77.10.1017/S0022112003004695

Lee, C., Choi, C.-H. & Kim, C.-J.
2008
Structured surfaces for a giant liquid slip. Phys. Rev. Lett.
101 (6), 064501.10.1103/PhysRevLett.101.064501

Lee, C., Choi, C.-H. & Kim, C.-J.
2016
Superhydrophobic drag reduction in laminar flows: a critical review. Exp. Fluids
57 (12), 1–20.

Maali, A., Pan, Y., Bhushan, B. & Charlaix, E.
2012
Hydrodynamic drag-force measurement and slip length on microstructured surfaces. Phys. Rev. E
85 (6), 066310.

Marshall, J. S.
2017
Exact formulae for the effective slip length of a symmetric superhydrophobic channel with flat or weakly curved menisci. SIAM J. Appl. Math.
77 (5), 1606–1630.

Mongruel, A., Chastel, T., Asmolov, E. S. & Vinogradova, O. I.
2013
Effective hydrodynamic boundary conditions for microtextured surfaces. Phys. Rev. E
87 (1), 011002.

Nizkaya, T. V., Dubov, A. L., Mourran, A. & Vinogradova, O. I.
2016
Probing effective slippage on superhydrophobic stripes by atomic force microscopy. Soft Matt.
12 (33), 6910–6917.

Ou, J., Perot, B. & Rothstein, J. P.
2004
Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids
16 (12), 4635–4643.

Ou, J. & Rothstein, J. P.
2005
Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids
17 (10), 103606.

Philip, J. R.
1972a
Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys.
23 (3), 353–372.

Philip, J. R.
1972b
Integral properties of flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys.
23 (6), 960–968.

Quéré, D.
2008
Wetting and roughness. Annu. Rev. Mater. Res.
38 (1), 71–99.10.1146/annurev.matsci.38.060407.132434

Rothstein, J. P.
2010
Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech.
42 (1), 89–109.

Sbragaglia, M. & Prosperetti, A.
2007
A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids
19 (4), 043603.

Schmieschek, S., Belyaev, A. V., Harting, J. & Vinogradova, O. I.
2012
Tensorial slip of superhydrophobic channels. Phys. Rev. E
85 (1), 016324.

Schnitzer, O. & Yariv, E.
2017
Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: large effective slip in the narrow-channel limit. Phys. Rev. Fluids
2 (7), 072101.

Seo, J. & Mani, A.
2016
On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids
28 (2), 025110.

Teo, C. J. & Khoo, B. C.
2009
Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves. Microfluid. Nanofluid.
7 (3), 353–382.10.1007/s10404-008-0387-0

Yariv, E.
2017
Velocity amplification in pressure-driven flows between superhydrophobic gratings of small solid fraction. Soft Matt.
13, 6287–6292.

Yariv, E. & Schnitzer, O.
2018
Pressure-driven plug flows between superhydrophobic surfaces of closely spaced circular bubbles. J. Engng Math.
111, 15–22.

Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L.
2007
Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids
19 (12), 123601.