Skip to main content
×
Home
    • Aa
    • Aa

Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry

  • Rocío Bolaños-Jiménez (a1), Massimiliano Rossi (a2), David Fernandez Rivas (a3), Christian J. Kähler (a2) and Alvaro Marin (a4)...
Abstract

Oscillating microbubbles can be used as microscopic agents. Using external acoustic fields they are able to set the surrounding fluid into motion, erode surfaces and even to carry particles attached to their interfaces. Although the acoustic streaming flow that the bubble generates in its vicinity has been often observed, it has never been measured and quantitatively compared with the available theoretical models. The scarcity of quantitative data is partially due to the strong three-dimensional character of bubble-induced streaming flows, which demands advanced velocimetry techniques. In this work, we present quantitative measurements of the flow generated by single and pairs of acoustically excited sessile microbubbles using a three-dimensional particle tracking technique. Using this novel experimental approach we are able to obtain the bubble’s resonant oscillating frequency, study the boundaries of the linear oscillation regime, give predictions on the flow strength and the shear in the surrounding surface and study the flow and the stability of a two-bubble system. Our results show that velocimetry techniques are a suitable tool to make diagnostics on the dynamics of acoustically excited microbubbles.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: a.marin@utwente.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Bertin , T. A. Spelman , O. Stephan , L. Gredy , M. Bouriau , E. Lauga  & P. Marmottant 2015 Propulsion of bubble-based acoustic microswimmers. Phys. Rev. Appl. 4 (6), 064012.

S. Brems , M. Hauptmann , E. Camerotto , A. Pacco , T. G. Kim , X. Xu , K. Wostyn , P. Mertens  & S. De Gendt 2014 Nanoparticle removal with megasonics: a review. ECS J. Solid State Sci. Technol. 3 (1), N3010N3015.

R. Dijkink  & C.-D. Ohl 2008 Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93 (25), 254107.

R. J. Dijkink , J. P. van der Dennen , C.-D. Ohl  & A. prosperetti 2006 The ‘acoustic scallop’: a bubble-powered actuator. J. Micromech. Microengng 16 (8), 16531659.

A. A. Doinikov  & A. Bouakaz 2016 Microstreaming generated by two acoustically induced gas bubbles. J. Fluid Mech. 796, 318339.

B. Dollet , S. M. Van Der Meer , V. Garbin , N. De Jong , D. Lohse  & M. Versluis 2008 Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound. Med. Biol. 34 (9), 14651473.

D. Fernandez Rivas , M. Ashokkumar , T. Leong , K. Yasui , T. Tuziuti , S. Kentish , D. Lohse  & H. J. G. E. Gardeniers 2012a Sonoluminescence and sonochemiluminescence from a microreactor. Ultrason. Sonochem. 19 (6), 12521259.

D. Fernandez Rivas , J. Betjes , B. Verhaagen , W. Bouwhuis , T. C. Bor , D. Lohse  & H. J. G. E. Gardeniers 2013a Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles. J. Appl. Phys. 113 (6), 064902.

D. Fernandez Rivas , A. Prosperetti , A. G. Zijlstra , D. Lohse  & H. J. G. E. Gardeniers 2010 Efficient sonochemistry through microbubbles generated with micromachined surfaces. Angew. Chem. Intl Ed. 49 (50), 96999701.

D. Fernandez Rivas , L. Stricker , A. G. Zijlstra , H. J. G. E. Gardeniers , D. Lohse  & A. Prosperetti 2013b Ultrasound artificially nucleated bubbles and their sonochemical radical production. Ultrason. Sonochem. 20 (1), 510524.

D. Fernandez Rivas , B. Verhaagen , J. R. T. Seddon , A. G Zijlstra , L.-M. Jiang , L. W. M. van der Sluis , M. Versluis , D. Lohse  & H. J. G. E. Gardeniers 2012b Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles. Biomicrofluidics 6 (3), 034114.

H.-C. Flemming , J. Wingender  & U. Szewzyk 2011 Biofilm Highlights. vol. 5. Springer.

V. Garbin , D. Cojoc , E. Ferrari , E. Di Fabrizio , M. L. J. Overvelde , S. M. Van Der Meer , N. De Jong , D. Lohse  & M. Versluis 2007 Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Appl. Phys. Lett. 90 (11), 114103.

H. Gelderblom , A. G. Zijlstra , L. van Wijngaarden  & A. Prosperetti 2012 Oscillations of a gas pocket on a liquid-covered solid surface. Phys. Fluids 24 (12), 122101.

M. Hauptmann , H. Struyf , S. De Gendt , C. Glorieux  & S. Brems 2013 Importance of bubble size control in ultrasonic surface cleaning by pulsed high-frequency sound fields. ECS J. Solid State Sci. Technol. 3 (1), N3032N3040.

W. Kim , K. Park , J. Oh , J. Choi  & H.-Y. Kim 2010 Visualization and minimization of disruptive bubble behavior in ultrasonic field. Ultrasonics 50 (8), 798802.

G. Lajoinie , I. De Cock , C. C. Coussios , I. Lentacker , S. Le Gac , E. Stride  & M. Versluis 2016 In vitro methods to study bubble-cell interactions: fundamentals and therapeutic applications. Biomicrofluidics 10 (1), 011501.

G. Liger-Belair , M. Vignes-Adler , C. Voisin , B. Robillard  & P. Jeandet 2002 Kinetics of gas discharging in a glass of champagne: the role of nucleation sites. Langmuir 18 (4), 12941301.

M. S. Longuet-Higgins 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454 (1970), 725742.

R. G. Macedo , B. Verhaagen , D. Fernandez Rivas , J. G. E. Gardeniers , L. W. M. van der Sluis , P. R. Wesselink  & M. Versluis 2014 Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models. Ultrason. Sonochem. 21 (1), 324335.

A. Marin , M. Rossi , B. Rallabandi , C. Wang , S. Hilgenfeldt  & C. J. Kähler 2015 Three-dimensional phenomena in microbubble acoustic version. Phys. Rev. Appl. 3 (4), 041001.

P. Marmottant  & S. Hilgenfeldt 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.

P. Marmottant  & S. Hilgenfeldt 2004 A bubble-driven microfluidic transport element for bioengineering. Proc. Natl Acad. Sci. USA 101 (26), 95239527.

P. Marmottant , S. van der Meer , M. Emmer , M. Versluis , N. de Jong , S. Hilgenfeldt  & D. Lohse 2005 A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118 (6), 34993505.

P. Marmottant , M. Versluis , N. De Jong , S. Hilgenfeldt  & D. lohse 2006 High-speed imaging of an ultrasound-driven bubble in contact with a wall: ‘Narcissus’ effect and resolved acoustic streaming. Exp. Fluids 41 (2), 147153.

G. Mazue , R. Viennet , J.-Y. Hihn , L. Carpentier , P. Devidal  & I. Albaïna 2011 Large-scale ultrasonic cleaning system: design of a multi-transducer device for boat cleaning (20 kHz). Ultrason. Sonochem. 18 (4), 895900.

D. L. Miller 1988 Particle gathering and microstreaming near ultrasonically activated gas-filled micropores. J. Acoust. Soc. Am. 84 (4), 13781387.

D. L. Miller  & W. L. Nyborg 1983 Theoretical investigation of the response of gas-filled micropores and cavitation nuclei to ultrasound. J. Acoust. Soc. Am. 73 (5), 15371544.

C. Otto , S. Zahn , F. Rost , P. Zahn , D. Jaros  & H. Rohm 2011 Physical methods for cleaning and disinfection of surfaces. Food Engng Rev. 3 (3–4), 171188.

N. A. Pelekasis , A. Gaki , A. Doinikov  & J. A. Tsamopoulos 1999 Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers. J. Fluid Mech. 500, 313347.

M. S. Plesset  & A. Prosperetti 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.

A. Pommella , N. J. Brooks , J. M. Seddon  & V. Garbin 2015 Selective flow-induced vesicle rupture to sort by membrane mechanical properties. Sci. Rep. 5, 13163.

N. Riley 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.

J. Rodríguez-Rodríguez , A. Casado-Chacón  & D. Fuster 2014 Physics of beer tapping. Phys. Rev. Lett. 113 (21), 214501.

M. Rossi  & C. J. Kähler 2014 Optimization of astigmatic particle tracking velocimeters. Exp. Fluids 55 (9), 113.

L. Stricker , B. Dollet , D. Fernandez Rivas  & D. Lohse 2013 Interacting bubble clouds and their sonochemical production. J. Acoust. Soc. Am. 134 (3), 18541862.

R. Thameem , B. Rallabandi  & S. Hilgenfeldt 2016 Particle migration and sorting in microbubble streaming flows. Biomicrofluidics 10 (1), 014124.

B. Verhaagen  & D. Fernandez Rivas 2016 Measuring cavitation and its cleaning effect. Ultrason. Sonochem. 29, 619628.

C. Wang , S. V. Jalikop  & S. Hilgenfeldt 2012 Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 6 (1), 012801.

C. Wang , B. Rallabandi  & S. Hilgenfeldt 2013 Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25 (2), 022002.

L. van Wijngaarden 2016 Mechanics of collapsing cavitation bubbles. Ultrason. Sonochem. 29 (C), 524527.

B. Zeqiri 2007 Metrology for ultrasonic applications. Prog. Biophys. Mol. Biol. 93 (1), 138152.

A. Zijlstra , D. Fernandez Rivas , H. J. G. E. Gardeniers , M. Versluis  & D. Lohse 2015 Enhancing acoustic cavitation using artificial crevice bubbles. Ultrasonics 56, 512523.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 10
Total number of PDF views: 275 *
Loading metrics...

Abstract views

Total abstract views: 277 *
Loading metrics...

* Views captured on Cambridge Core between 10th May 2017 - 22nd September 2017. This data will be updated every 24 hours.