Skip to main content
×
×
Home

Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate Péclet numbers

  • Ory Schnitzer (a1), Itzchak Frankel (a2) and Ehud Yariv (a1)
Abstract

Macroscale description of streaming-potential phenomena in the thin-double-layer limit, and in particular the associated electro-viscous forces, has been a matter of long-standing controversy. In part 1 of this work (Yariv, Schnitzer & Frankel, J. Fluid Mech., vol. 685, 2011, pp. 306–334) we identified that the product of the Hartmann () and Péclet () numbers is , being the dimensionless Debye thickness. This scaling relationship defines a one-family class of limit processes appropriate to the consistent analysis of this singular problem. In that earlier contribution we focused on the generic problems associated with moderate and large , where the streaming-potential magnitude is comparable to the thermal voltage. Here we consider the companion generic limit of moderate Péclet numbers and large Hartmann numbers, deriving the appropriate macroscale model wherein the Debye-layer physics is represented by effective boundary conditions. Since the induced electric field is asymptotically smaller, calculation of these conditions requires higher asymptotic orders in analysing the Debye-scale transport. Nonetheless, the leading-order electro-viscous forces are of the same relative magnitude as those previously obtained in the large- limit. The structure of these forces is different, however, first because the small Maxwell stresses do not contribute at leading order, and second because salt polarization results in a dominant diffuso-osmotic slip. Since the salt distribution is governed by an advection–diffusion equation, this slip gives rise to electro-viscous forces which are nonlinear in the driving flow. The resulting scheme is illustrated by the calculation of the electro-viscous excess drag in the prototype problem of a translating sphere.

Copyright
Corresponding author
Email address for correspondence: udi@technion.ac.il
References
Hide All
1. Alexander, B. M. & Prieve, D. C. 1987 A hydrodynamic technique for measurement of colloidal forces. Langmuir 3 (5), 788795.
2. Bike, S. G. & Prieve, D. C. 1990 Electrohydrodynamic lubrication with thin double layers. J. Colloid Interface Sci. 136 (1), 95112.
3. Bike, S. G. & Prieve, D. C. 1992 Electrohydrodynamics of thin double layers: a model for the streaming potential profile. J. Colloid Interface Sci. 154, 8796.
4. Booth, F. 1950 The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 203 (1075), 514.
5. Booth, F. 1954 Sedimentation potential and velocity of solid spherical particles. J. Chem. Phys. 22, 19561968.
6. Brenner, H. 1964 The Stokes resistance of an arbitrary particle. Part 4. Arbitrary fields of flow. Chem. Engng Sci. 19, 703727.
7. Cox, R. G. 1997 Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech. 338, 134.
8. Dukhin, S. S. 1993 Non-equilibrium electric surface phenomena. Adv. Colloid Interface Sci. 44, 1134.
9. Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.
10. Keh, H. J. & Anderson, J. L. 1985 Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech. 153, 417439.
11. Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
12. Michelin, S. & Lauga, E. 2011 Optimal feeding is optimal swimming for all Péclet numbers. Phys. Fluids 23, 101901.
13. Morrison, F. A. 1970 Electrophoresis of a particle of arbitrary shape. J. Colloid Interface Sci. 34, 210214.
14. O’Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2 (74), 16071626.
15. Ohshima, H., Healy, T. W., White, L. R. & O’Brien, R. W. 1984 Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J. Chem. Soc. Faraday Trans. 80 (10), 12991317.
16. Overbeek, J. T. G. 1943 Theorie der Elektrophorese: der Relaxationseffekt. Kolloid-Beihefte 54, 287.
17. Prieve, D. C., Ebel, J. P., Anderson, J. L. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247269.
18. Rubinstein, I. & Zaltzman, B. 2001 Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes. Math. Models Meth. Appl. Sci. 11, 263300.
19. Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.
20. Schnitzer, O., Khair, A. & Yariv, E. 2011 Irreversible electrokinetic repulsion in zero-Reynolds-number sedimentation. Phys. Rev. Lett. 107, 278301.
21. Smoluchowski, M. 1921 Elektrische Endosmose und Strömungsströme. In Handbuch der Elektrizität und des Magnetismus, vol. II, Stationäre Ströme (ed. Graetz, L. ). Barth.
22. Tabatabaei, S. M., van de Ven, T. G. M. & Rey, A. D. 2006 Electroviscous sphere-wall interactions. J. Colloid Interface Sci. 301 (1), 291301.
23. Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic.
24. van de Ven, T. G. M., Warszynski, P. & Dukhin, S. S. 1993 Electrokinetic lift of small particles. J. Colloid Interface Sci. 157 (2), 328331.
25. Warszyski, P., Wu, X. & van de Ven, T. 1998 Electrokinetic lift force for a charged particle moving near a charged wall: a modified theory and experiment. Colloid Surf. A 140 (1-3), 183198.
26. Yariv, E. 2006 Force-free electrophoresis? Phys. Fluids 18, 031702.
27. Yariv, E. 2010 An asymptotic derivation of the thin-Debye-layer limit for electrokinetic phenomena. Chem. Engng Commun. 197, 317.
28. Yariv, E. & Davis, A. 2010 Electro-osmotic flows over highly polarizable dielectric surfaces. Phys. Fluids 22, 052006.
29. Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.
30. Yossifon, G., Frankel, I. & Miloh, T. 2007 Symmetry breaking in induced-charge electro-osmosis over polarizable spheroids. Phys. Fluids 19, 068105.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed