Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-13T04:44:15.517Z Has data issue: false hasContentIssue false

Streamwise-localised, symmetric invariant solutions in square-duct flow

Published online by Cambridge University Press:  07 August 2025

Stanisław Wojciech Gepner*
Affiliation:
Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, Warsaw 00-665, Poland
Shinya Okino
Affiliation:
Graduate School of Engineering, Kyoto University, 4 Kyoto daigaku-katsura, Nishikyo, Kyoto 615-8540, Japan Department of Mechanical Engineering, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
Genta Kawahara
Affiliation:
Graduate School of Engineering Science, University of Osaka, 1–3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
*
Corresponding author: Stanisław Wojciech Gepner, stanislaw.gepner@pw.edu.pl

Abstract

Flow through a square-duct at a moderate Reynolds number is investigated. We first employ an edge-tracking procedure in the $\pi$-rotationally symmetric sub-space of state space and identify a streamwise-localised invariant solution for square-duct flow, which is a steady travelling wave with mirror symmetries across bisectors of the duct walls. The identified invariant solution features four vortices placed in pairs at opposite duct walls and exhibits significant streamwise localisation making it the first reported localised solution in the square-duct flow. Additionally, this solution remains very close to the laminar attractor in the sense of the velocity perturbation energy and the corresponding hydraulic losses. Stability analysis of this solution demonstrates that the identified state is an edge state in the $\pi$-rotationally symmetric sub-space but not in the full space. Next, a long-time turbulence behaviour and its relevance to the symmetric streamwise-localised invariant solution are discussed. We focus on the characteristics of the averaged flow and the recurring patterns of eight- or four-vortex states, typical for the square-duct flow and related to Prandtl’s secondary flows of the second type. Through heuristic arguments, we illustrate that turbulent flow exhibits relatively quiescent interludes of increased symmetry of the velocity field across wall bisectors. We show that those periods correlate to episodes where, statistically, a four-vortex flow configuration emerges from the otherwise eight-vortex state, which is also associated with decreased symmetry of the flow field. Our results suggest that the four-vortex state appearing in the relatively quiescent periods in the flow time history, accompanied by flow field symmetrisation and the onset of streamwise localisation of turbulent flow, bears a striking similarity to the found symmetric streamwise-localised invariant solution.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192196.CrossRefGoogle ScholarPubMed
Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110 (22), 224502.10.1103/PhysRevLett.110.224502CrossRefGoogle ScholarPubMed
Babuška, I. 1973 The finite element method with Lagrangian multipliers. Numer. Math. 20 (3), 179192.CrossRefGoogle Scholar
Biau, D. & Bottaro, A. 2009 An optimal path to transition in a duct. Phil. Trans. R. Soc. Lond. A Math. Phys. Engng Sci. 367, 529544.Google Scholar
Biau, D., Soueid, H. & Bottaro, A. 2008 Transition to turbulence in duct flow. J. Fluid Mech. 596, 133142.CrossRefGoogle Scholar
Bolis, A., Cantwell, C.D., Moxey, D., Serson, D. & Sherwin, S.J. 2016 An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies. Comput. Phys. Commun. 206, 1725.CrossRefGoogle ScholarPubMed
Boyd, J.P. 2001 Chebyshev and Fourier Spectral Methods. Courier Corporation.Google Scholar
Brand, E. & Gibson, J.F. 2014 A doubly localized equilibrium solution of plane Couette flow. J. Fluid Mech. 750, R3.10.1017/jfm.2014.285CrossRefGoogle Scholar
Brezzi, F. 1974 On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Publications Mathématiques et Informatique De Rennes S4, 126.Google Scholar
Cantwell, C.D. 2015 Nektar: An open-source spectral/element framework. Comput. Phys. Commun. 192, 205219.CrossRefGoogle Scholar
Chantry, M., Willis, A.P. & Kerswell, R. 2014 Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow. Phys. Rev. Lett. 112 (16), 164501.CrossRefGoogle ScholarPubMed
Dijkstra, H.A. 2014 Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15 (1), 145.CrossRefGoogle Scholar
Duguet, Y., Willis, A.P. & Kerswell, R.R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.10.1017/S0022112008003248CrossRefGoogle Scholar
Duguet, Y., Willis, A.P. & Kerswell, R.R. 2010 Slug genesis in cylindrical pipe flow. J. Fluid Mech. 663, 180208.CrossRefGoogle Scholar
Ehrenstein, U. & Koch, W. 1991 Three-dimensional wavelike equilibrium states in plane Poiseuille flow. J. Fluid Mech. 228, 111148.CrossRefGoogle Scholar
Gavrilakis, S. 1992 Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101129.CrossRefGoogle Scholar
Gibson, J.F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.10.1017/S0022112009990863CrossRefGoogle Scholar
Hof, B., van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941598.10.1126/science.1100393CrossRefGoogle ScholarPubMed
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 Summer Program, Center for Turbulence Research, pp. 193208. NASA Ames/Stanford University.Google Scholar
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70 (3), 703716.10.1143/JPSJ.70.703CrossRefGoogle Scholar
Jimenez, J. 1987 Coherent structures and dynamical systems. In Stanford University Studying Turbulence Using Numerical Simulation DatabasesProceedings of the 1987 Summer Program.Google Scholar
Karniadakis, G.E. & Sherwin, S.J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press.CrossRefGoogle Scholar
Karniadakis, G.E., Israeli, M. & Orszag, S.A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.10.1016/0021-9991(91)90007-8CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.10.1146/annurev-fluid-120710-101228CrossRefGoogle Scholar
Keller, H.B. 1977, Numerical solution of bifurcation and nonlinear eigenvalue problem. In Applications of Bifurcation Theory (ed. P. Rabinowitz), pp. 359384. Academic Press, New York.Google Scholar
Lehoucq, R.B., Sorensen, D.C. & Yang, C. 1998 ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.10.1137/1.9780898719628CrossRefGoogle Scholar
Moxey, D. 2020 Nektar: enhancing the capability and application of high-fidelity spectral/hp element methods. Comput. Phys. Commun. 249, 107110.CrossRefGoogle Scholar
Okino, S. 2014 Spatially localized solutions in rectangular duct flow. In Prodeedings of JSME FED Meeting 2014, pp. 0802. JSME.Google Scholar
Okino, S. & Nagata, M. 2012 Asymmetric travelling waves in a square duct. J. Fluid Mech. 693, 5768.CrossRefGoogle Scholar
Okino, S., Nagata, M., Wedin, H. & Bottaro, A. 2010 A new nonlinear vortex state in square-duct flow. J. Fluid Mech. 657, 413.10.1017/S0022112010002806CrossRefGoogle Scholar
Patterson, G.S. Jr & Orszag, S.A. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14 (11), 25382541.CrossRefGoogle Scholar
Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F. 2018 Turbulence and secondary motions in square duct flow. J. Fluid Mech. 840, 631655.CrossRefGoogle Scholar
Prandtl, L. 1926 Ueber die ausgebildete turbulenz. In Proceedings of the 2nd international congress for applied mechanics, vol. 1217, pp. 6274 Google Scholar
Pringle, C.C. & Kerswell, R. 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99 (7), 074502.CrossRefGoogle ScholarPubMed
Pushenko, V. & Gepner, S.W. 2021 Flow destabilization and nonlinear solutions in low aspect ratio, corrugated duct flows. Phys. Fluids 33 (4), 044109.10.1063/5.0045297CrossRefGoogle Scholar
Scherer, M., Uhlmann, M. & Kawahara, G. 2024 Periodic bursting cycles on the edge to square duct turbulence. J. Phys. Conf. Ser. 2753 (1), 012013.10.1088/1742-6596/2753/1/012013CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Springer.10.1007/978-1-4613-0185-1CrossRefGoogle Scholar
Schneider, T.M., Marinc, D. & Eckhardt, B. 2010 Localized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646, 441451.10.1017/S0022112009993144CrossRefGoogle Scholar
Skufca, J.D., Yorke, J.A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 174101.CrossRefGoogle Scholar
Takeishi, K., Kawahara, G., Wakabayashi, H., Uhlmann, M. & Pinelli, A. 2015 Localized turbulence structures in transitional rectangular-duct flow. J. Fluid Mech. 782, 368379.10.1017/jfm.2015.546CrossRefGoogle Scholar
Tatsumi, T. & Yoshimura, T. 1990 Stability of the laminar flow in a rectangular duct. J. Fluid Mech. 212, 437449.CrossRefGoogle Scholar
Uhlmann, M., Kawahara, G. & Pinelli, A. 2010 Traveling-waves consistent with turbulence-driven secondary flow in a square duct. Phys. Fluids 22 (8), 084102.CrossRefGoogle Scholar
Uhlmann, M., Pinelli, A., Kawahara, G. & Sekimoto, A. 2007 Marginally turbulent flow in a square duct. J. Fluid Mech. 588, 153162.CrossRefGoogle Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.CrossRefGoogle Scholar
Viswanath, D. 2009 The critical layer in pipe flow at high Reynolds number. Phil. Trans. R. Soc. Lond. A: Math. Phys. Engng Sci. 367 (1888), 561576.Google ScholarPubMed
Wedin, H., Bottaro, A. & Nagata, M. 2009 Three-dimensional traveling waves in a square duct. Phys. Rev. E 79 (6), 065305.10.1103/PhysRevE.79.065305CrossRefGoogle Scholar
Zammert, S. & Eckhardt, B. 2014 Streamwise and doubly-localised periodic orbits in plane Poiseuille flow. J. Fluid Mech. 761, 348359.CrossRefGoogle Scholar