Skip to main content Accessibility help
×
Home

Study of polygonal water bells: inertia-dominated thin-film flows over microtextured surfaces

  • Emilie Dressaire (a1), Laurent Courbin (a2), Adrian Delancy (a3), Marcus Roper (a4) and Howard A. Stone (a5)...

Abstract

Microtextured surfaces are commonly used to study complex hydrodynamic phenomena such as spreading and splashing of liquid droplets. However, although surface topography is known to modify near-surface flow, there is no theory able to quantitatively predict the dramatic changes in dynamics of liquid spreading and splashing. Here, we investigate experimentally water bells formed on micropatterned surfaces in order to characterize the hydrodynamics of inertia-dominated flows through regular porous layers. Water bells are self-suspended catenary-shaped liquid films created when a jet impinges on a horizontal disc called an impactor. We show that the presence of micrometre-sized posts regularly arranged on the impactor results in a decrease of the water bell radius and the loss of axisymmetry as open water bells adopt polygonal shapes. We introduce a simple model that captures the main features of the inertia-dominated flow and reveals the role of the hydrodynamic interactions between neighbouring posts. In addition to their applications for tunable jet atomization, these polygonal sheets provide a paradigmatic system for understanding inertia-dominated flow in porous media.

Copyright

Corresponding author

Email address for correspondence: emilie.dressaire@trincoll.edu

References

Hide All
Ashgriz, N. 2011 Handbook of Atomization and Sprays: Theory and Applications. Springer.
Batchelor, G. K. 2010 An Introduction to Fluid Dynamics. Cambridge University Press.
Boussinesq, J. 1869a Théories des expériences de Savart, sur la forme que prend une veine liquide apres s’être choquée contre un plan circulaire i. C. R. Acad. Sci. Paris 69, 4548.
Boussinesq, J. 1869b Théories des expériences de Savart, sur la forme que prend une veine liquide apres s’être choquée contre un plan circulaire ii. C. R. Acad. Sci. Paris 69, 128132.
Bremond, N. 2003 Stabilité et Atomisation Des Nappes Liquides. PhD thesis, Université de Provence, Aix-Marseille I.
Bremond, N., Clanet, C. & Villermaux, E. 2007 Atomization of undulating liquid sheets. J. Fluid Mech. 585, 421456.
Buckingham, R. & Bush, J. W. M. 2001 Fluid polygons. Phys. Fluids 13, S10.
Clanet, C. 2001 Dynamics and stability of water bells. J. Fluid Mech. 430, 111147.
Clanet, C. 2007 Waterbells and liquid sheets. Annu. Rev. Fluid Mech. 39, 469496.
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.
Courbin, L., Bird, J. C. & Stone, H. A. 2006 Splash and anti-splash: observation and design. Chaos 16, 41102.
Dressaire, E., Courbin, L., Crest, J. & Stone, H. A. 2010 Inertia dominated thin-film flows over microdecorated surfaces. Phys. Fluids 22, 073602.
Ergun, S. 1952 Fluid flow though packed columns. Chem. Engng Prog. 48, 8994.
Juarez, G., Gastopoulos, T., Zhang, Y., Siegel, M. L. & Arratia, P. E. 2012 Splash control of drop impacts with geometric targets. Phys. Rev. E 85, 026319.
Koch, D. L. & Ladd, A. J. C. 1997 Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J. Fluid Mech. 349, 3166.
Lance, G. N. & Perry, R. L. 1953 Water bells. Proc. Phys. Soc. B 66, 10671072.
Lhuissier, H. & Villermaux, E. 2012 Crumpled water bells. J. Fluid Mech. 693, 508540.
McDonald, J. C. & Whitesides, G. M. 2002 Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491499.
Savart, F. 1833a Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. Chim. 54, 5687.
Savart, F. 1833b Suite du mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. de Chim. 54, 113145.
Sharman, B., Lien, F. S., Davidson, L. & Norberg, C. 2005 Numerical predictions of low Reynolds number flows over two tandem circular cylinders. Intl J. Numer. Meth. Fluids 47, 423447.
Taylor, G. 1959 The dynamics of thin sheets of fluid. I. Water bells. Proc. R. Soc. Lond. A 253 (1274), 289295.
Tsai, P., Hendrix, M. H. W., Dijkstra, R. R. M., Shui, L. & Lohse, D. 2011 Microscopic structure influencing macroscopic splash at high Weber number. Soft Matt. 7, 11325.
Watson, E. J. 1964 The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.
Xu, L. 2007 Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75, 056316.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Study of polygonal water bells: inertia-dominated thin-film flows over microtextured surfaces

  • Emilie Dressaire (a1), Laurent Courbin (a2), Adrian Delancy (a3), Marcus Roper (a4) and Howard A. Stone (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed