Skip to main content
×
Home

Studying edge geometry in transiently turbulent shear flows

  • Matthew Chantry (a1) and Tobias M. Schneider (a2) (a3)
Abstract
Abstract

In linearly stable shear flows at moderate Reynolds number, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories, we provide evidence that the edge of chaos does not separate state space globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.

Copyright
Corresponding author
Email address for correspondence: matthew.chantry@bristol.ac.uk
References
Hide All
Avila M., Mellibovsky F., Roland N. & Hof B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110 (22), 224502.
Avila K., Moxey D., de Lozar A., Avila M., Barkley D. & Hof B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.
De Lozar A., Mellibovsky F., Avila M. & Hof B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108 (21), 214502.
Duguet Y., Willis A. P. & Kerswell R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613 (1), 255274.
Faisst H. & Eckhardt B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.
Gibson J. F.2012 Channelflow: a spectral Navier–Stokes simulator in C inline-graphic $++$ . Tech. Rep. University of New Hampshire. Channelflow.org.
Gibson J. F., Halcrow J. & Cvitanovic P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.
Hof B., Westerweel J., Schneider T. M. & Eckhardt B. 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.
Itano T. & Toh S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70 (3), 703716.
Kawahara G. & Kida S. 2001 Periodic motion embedded in plane couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.
Kerswell R. R. & Tutty O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.
Khapko T., Kreilos T., Schlatter P., Duguet Y., Eckhardt B. & Henningson D. S 2013 Localized edge states in the asymptotic suction boundary layer. J. Fluid Mech. 717, R6.
Kim L. & Moehlis J. 2008 Characterizing the edge of chaos for a shear flow model. Phys. Rev. E 78 (3), 036315.
Kreilos T. & Eckhardt B. 2012 Periodic orbits near onset of chaos in plane couette flow. Chaos 22 (4), 047505.
Lebovitz N. R. 2009 Shear-flow transition: the basin boundary. Nonlinearity 22 (11), 26452655.
Lebovitz N. R. 2012 Boundary collapse in models of shear-flow transition. Commun. Nonlinear Sci. Numer. Simul. 17 (5), 20952100.
Lebovitz N. & Mariotti G. 2013 Edges in models of shear flow. J. Fluid Mech. 721, 386402.
Moxey D. & Barkley D. 2010 Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. USA 107 (18), 80918096.
Nagata M. 1990 Three-dimensional finite-amplitude solutions in plane couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.
Schneider T. M., Eckhardt B. & Yorke J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.
Schneider T. M., Gibson J. F. & Burke J. 2010a Snakes and ladders: localized solutions of plane couette flow. Phys. Rev. Lett. 104 (10), 104501.
Schneider T. M., Gibson J. F., Lagha M., De Lillo F. & Eckhardt B. 2008 Laminar–turbulent boundary in plane couette flow. Phys. Rev. E 78 (3), 037301.
Schneider T. M., Lillo F. D., Buehrle J., Eckhardt B., Dörnemann T., Dörnemann K. & Freisleben B. 2010b Transient turbulence in plane Couette flow. Phys. Rev. E 81, 015301(R).
Skufca J. D., Yorke J. A. & Eckhardt B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 174101.
Viswanath D. 2008 The dynamics of transition to turbulence in plane couette flow. In Mathematics and Computation, A Contemporary View, pp. 109127. Springer.
Waleffe F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 43 *
Loading metrics...

Abstract views

Total abstract views: 136 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.