Skip to main content
    • Aa
    • Aa

Studying edge geometry in transiently turbulent shear flows

  • Matthew Chantry (a1) and Tobias M. Schneider (a2) (a3)

In linearly stable shear flows at moderate Reynolds number, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories, we provide evidence that the edge of chaos does not separate state space globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Avila , F. Mellibovsky , N. Roland  & B. Hof 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110 (22), 224502.

K. Avila , D. Moxey , A. de Lozar , M. Avila , D. Barkley  & B. Hof 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.

A. De Lozar , F. Mellibovsky , M. Avila  & B. Hof 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108 (21), 214502.

Y. Duguet , A. P. Willis  & R. R. Kerswell 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613 (1), 255274.

H. Faisst  & B. Eckhardt 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.

J. F. Gibson , J. Halcrow  & P. Cvitanovic 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.

B. Hof , J. Westerweel , T. M. Schneider  & B. Eckhardt 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.

T. Itano  & S. Toh 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70 (3), 703716.

G. Kawahara  & S. Kida 2001 Periodic motion embedded in plane couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.

R. R. Kerswell  & O. R. Tutty 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.

T. Khapko , T. Kreilos , P. Schlatter , Y. Duguet , B. Eckhardt  & D. S Henningson 2013 Localized edge states in the asymptotic suction boundary layer. J. Fluid Mech. 717, R6.

L. Kim  & J. Moehlis 2008 Characterizing the edge of chaos for a shear flow model. Phys. Rev. E 78 (3), 036315.

T. Kreilos  & B. Eckhardt 2012 Periodic orbits near onset of chaos in plane couette flow. Chaos 22 (4), 047505.

N. R. Lebovitz 2009 Shear-flow transition: the basin boundary. Nonlinearity 22 (11), 26452655.

N. R. Lebovitz 2012 Boundary collapse in models of shear-flow transition. Commun. Nonlinear Sci. Numer. Simul. 17 (5), 20952100.

N. Lebovitz  & G. Mariotti 2013 Edges in models of shear flow. J. Fluid Mech. 721, 386402.

D. Moxey  & D. Barkley 2010 Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. USA 107 (18), 80918096.

M. Nagata 1990 Three-dimensional finite-amplitude solutions in plane couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.

T. M. Schneider , B. Eckhardt  & J. A. Yorke 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.

T. M. Schneider , J. F. Gibson  & J. Burke 2010a Snakes and ladders: localized solutions of plane couette flow. Phys. Rev. Lett. 104 (10), 104501.

T. M. Schneider , J. F. Gibson , M. Lagha , F. De Lillo  & B. Eckhardt 2008 Laminar–turbulent boundary in plane couette flow. Phys. Rev. E 78 (3), 037301.

T. M. Schneider , F. D. Lillo , J. Buehrle , B. Eckhardt , T. Dörnemann , K. Dörnemann  & B. Freisleben 2010b Transient turbulence in plane Couette flow. Phys. Rev. E 81, 015301(R).

J. D. Skufca , J. A. Yorke  & B. Eckhardt 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 174101.

D. Viswanath 2008 The dynamics of transition to turbulence in plane couette flow. In Mathematics and Computation, A Contemporary View, pp. 109127. Springer.

F. Waleffe 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 112 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.