Skip to main content
    • Aa
    • Aa

Subcritical transition and spiral turbulence in circular Couette flow

  • M. J. Burin (a1) and C. J. Czarnocki (a1)

We present new observations of a controlled transition to turbulence in a fundamental but little-studied regime: circular Couette flow with only the outer cylinder rotating. Our apparatus consists of an outer cylinder of fixed radius and three inner cylinders having different radii that are used interchangeably to study the effect of flow curvature. With the smallest inner cylinder the end-cap configuration (vertical boundary conditions) may also be varied. The turbulent transition is found to be sensitive to both gap width and end-cap configuration, with wider gaps transitioning at higher rotation rates. All configurations are observed to transition with hysteresis and intermittency. A laser Doppler velocimetry (LDV)-based study of the azimuthal velocity profile as a function of gap width and rotation rate reveals that turbulence, once initiated, is confined to regions of significant shear. For wider gap widths, the radial location of these shear layers is determined by the chosen end-cap configuration. This, in turn, affects the transition Reynolds number, which we posit to be radially dependent. The narrow-gap case in particular features spiral turbulence, whose properties are found to be similar to observations of the phenomenon in related shear flows. The velocity profile in this case is correlated with overlapping boundary layers, suggesting a coupling mechanism for the origin of laminar-turbulent banding phenomena.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. C. D. Andereck , S. S. Liu & H. Swinney 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.

2. C. van Atta 1966 Exploratory measurements in spiral turbulence. J. Fluid Mech. 25, 495512.

3. D. Barkley & L. S. Tuckerman 2007 Mean flow of turbulent-laminar patterns in plane Couette flow. J. Fluid Mech. 576, 109137.

4. D. Borrero-Echeverry , M. F. Schatz & R. Tagg 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 025301.

5. S. Bottin & H. Chaté 1998 Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6, 144155.

6. M. J. Burin , H. Ji , E. Schartman , R. Cutler , P. Heitzenroeder , W. Liu , L. Morris & S. Raftopolous 2006 Reduction of Ekman circulation within Taylor–Couette flow. Exp. Fluids 40, 962966.

7. D. Coles 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.

8. D. Coles & C. van Atta 1966 Measured distortion of a laminar circular Couette flow by end effects. J. Fluid Mech. 25, 513521.

9. P. W. Colovas & C. D. Andereck 1997 Turbulent bursting and spatiotemporal intermittency in the counterrotating Taylor–Couette system. Phys. Rev. E 55, 27362741.

11. K. Coughlin & P. S. Marcus 1996 Turbulent bursts in Couette–Taylor flow. Phys. Rev. Lett. 77, 22142217.

12. A. Cros & P. Le Gal 2002 Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk. Phys. Fluids 14, 37553765.

13. O. Czarny & R. Lueptow 2007 Time scales for transition in Taylor–Couette flow. Phys. Fluids 19, 054103.

14. W. J. A. Dahm , C. E. Frieler & G. Tryggvason 1992 Vortex structure and dynamics in the near field of a coaxial jet. J. Fluid Mech. 241, 371402.

15. F. Daviaud , J. Hegseth & P. Bergé 1992 Subcritical transition to turbulence in plane Couette flow. Phys. Rev. Lett. 69, 054103.

16. S. Dong 2009 Evidence for internal structures of spiral turbulence. Phys. Rev. E 80, 067301.

17. S. Dong & X. Zheng 2011 Direct numerical simulation of spiral turbulence. J. Fluid Mech. 668, 150173.

18. B. Dubrulle , O. Dauchot , F. Daviaud , P.-Y Longretti , D. Richard & J.-P. Zahn 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.

20. M. Dunst 1972 An experimental and analytical investigation of angular momentum exchange in a rotating fluid. J. Fluid Mech. 55, 301310.

21. B. Eckhardt , S. Grossmann & D. Lohse 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.

22. J. W. Elder 1960 An experimental investigation of turbulent spots and breakdown to turbulence. J. Fluid Mech. 9, 235246.

23. D. P. M. van Gils , S. Huisman , G.-W. Bruggert , C. Sun & D. Lohse 2011 Torque scaling in turbulent Taylor–Couette flow with co- and counter-rotating cylinders. Phys. Rev. Lett. 106, 024502.

24. A. Goharzadeh & I. Mutabazi 2001 Experimental characterization of intermittency regimes in the Couette-Taylor system. Eur. Phys. J. B 19, 157162.

26. J. J. Hegseth , C. D. Andereck , F. Hayot & Y. Pomeau 1989 Spiral turbulence and phase dynamics. Phys. Rev. Lett. 62, 257260.

27. R. van Hout & J. Katz 2011 Measurements of mean flow and turbulence characteristics in high-Reynolds number counter-rotating Taylor–Couette flow. Phys. Fluids 23, 105102.

28. M. L. Hunt , R. Zenit , C. S. Campbell & C. E. Brennen 2002 Revisiting the 1954 suspension experiments of R. A. Bagnold. J. Fluid Mech. 452, 124.

29. H. Ji , M. J. Burin , E. Schartman & J. Goodman 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343.

30. D. D. Joseph 1976 Stability of Fluid Motions. Springer-Verlag.

31. G. Lesur & P.-Y. Longaretti 2005 On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. Astron. Astrophys. 444, 2544.

32. A. Mallock 1896 Experiments on fluid viscosity. Proc. R. Soc. Lond. 45, 126132.

33. P. Manneville 2004 Spots and turbulent domains in a model of transitional plane Couette flow. Theor. Comput. Fluid Dyn. 18, 169181.

34. A. Meseguer , F. Mellibovsky , M. Avila & F. Marques 2009 Instability mechanisms and transition scenarios of spiral turbulence in Taylor–Couette flow. Phys. Rev. E 80, 046315.

35. M. S. Paoletti & D. P. Lathrop 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.

38. A. Prigent , G. Grégoire , H. Chaté & O. Dauchot 2003 Long-wavelength modulation of turbulent shear flows. Physica D 174, 100113.

39. A. Prigent , G. Grégoire , H. Chaté , O. Dauchot & W. V. Saarloos 2002 Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501.

42. J. Rolland & P. Manneville 2011 Ginzburg–Landau description of laminar-turbulent oblique band formation in transitional plane Couette flow. Eur. Phys. J. B 80, 529544.

43. E. Schartman , H. Ji & M. J. Burin 2009 Development of a Couette–Taylor flow device with active minimization of secondary circulation. Rev. Sci. Instrum. 80, 024501.

44. F. Schultz-Grunow 1959 Zur Stabilität der Couette–Strömung. Z. Angew. Math. Mech. 39, 101110.

45. R. M. C. So & G. Mellor 1973 Experiment on convex curvature effects in turbulent boundary layers. J. Fluid Mech. 60, 4362.

46. G. I. Taylor 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lon. A 223, 289343.

47. G. I. Taylor 1936 Fluid friction between rotating cylinders. I. Torque measurements. Proc. Roy. Soc. Lond. A 157, 546564.

49. L. Tuckerman & D. Barkley 2011 Patterns and dynamics in transitional plane Couette flow. Phys. Fluids 23, 041301.

50. F. Wendt 1933 Turbulente Strömungen zwischen zwei rotierenden konaxialen Zylindern. Ing.-Arch. 4, 577595.

51. Y. Yamada & S. Imao 1986 Flow of a fluid contained between concentric cylinders both rotating. Bull. Japan Soc. Mech. Eng. 29, 16911697.

52. Y. B. Zeldovich 1981 On the friction of fluids between rotating cylinders. Proc. R. Soc. Lond. A 374, 299312.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 42 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd August 2017. This data will be updated every 24 hours.