Arakawa, A.
1966
Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys.
1 (1), 119–143.

Beck, A. D., Flad, D. G. & Munz, C.-D.2018 Neural networks for data-based turbulence models. arXiv:1806.04482.
Berselli, L. C., Iliescu, T. & Layton, W. J.
2005
Mathematics of Large Eddy Simulation of Turbulent Flows. Springer.

Canuto, V. M. & Cheng, Y.
1997
Determination of the Smagorinsky–Lilly constant *C*
_{
S
}
. Phys. Fluids
9 (5), 1368–1378.

Cohen, K., Siegel, S., McLaughlin, T. & Gillies, E.
2003
Feedback control of a cylinder wake low-dimensional model. AIAA J.
41 (7), 1389–1391.

Cushman-Roisin, B. & Beckers, J.-M.
2011
Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101. Academic.

Duraisamy, K., Iaccarino, G. & Xiao, H.2018 Turbulence modeling in the age of data. arXiv:1804.00183.
Eden, C. & Greatbatch, R. J.
2008
Towards a mesoscale eddy closure. Ocean Model.
20 (3), 223–239.

Faller, W. E. & Schreck, S. J.
1997
Unsteady fluid mechanics applications of neural networks. J. Aircraft
34 (1), 48–55.

Fox-Kemper, B., Danabasoglu, G., Ferrari, R., Griffies, S. M., Hallberg, R. W., Holland, M. M., Maltrud, M. E., Peacock, S. & Samuels, B. L.
2011
Parameterization of mixed layer eddies. III. Implementation and impact in global ocean climate simulations. Ocean Model.
39 (1–2), 61–78.

Frederiksen, J. S., O’Kane, T. J. & Zidikheri, M. J.
2013
Subgrid modelling for geophysical flows. Phil. Trans. R. Soc. Lond. A
371 (1982), 20120166.

Frederiksen, J. S. & Zidikheri, M. J.
2016
Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models. Nonlinear Process. Geophys.
23 (2), 95–105.

Galperin, B. & Orszag, S. A.
1993
Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press.

Gamahara, M. & Hattori, Y.
2017
Searching for turbulence models by artificial neural network. Phys. Rev. Fluids
2 (5), 054604.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. H.
1991
A dynamic subgrid-scale eddy viscosity model. Phys. Fluids
3 (7), 1760–1765.

Ghosal, S., Lund, T. S., Moin, P. & Akselvoll, K.
1995
A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech.
286, 229–255.

King, R. N., Hamlington, P. E. & Dahm, W. J.
2016
Autonomic closure for turbulence simulations. Phys. Rev. E
93 (3), 031301.

Kingma, D. P. & Ba, J.2014 Adam: a method for stochastic optimization. arXiv:1412.6980.
Kraichnan, R. H.
1967
Inertial ranges in two-dimensional turbulence. Phys. Fluids
10 (7), 1417–1423.

Kutz, J. N.
2017
Deep learning in fluid dynamics. J. Fluid Mech.
814, 1–4.

Langford, J. A. & Moser, R. D.
1999
Optimal LES formulations for isotropic turbulence. J. Fluid Mech.
398, 321–346.

Leith, C. E.
1968
Diffusion approximation for two-dimensional turbulence. Phys. Fluids
11 (3), 671–672.

Ling, J., Kurzawski, A. & Templeton, J.
2016
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech.
807, 155–166.

Ling, J. & Templeton, J.
2015
Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier–Stokes uncertainty. Phys. Fluids
27 (8), 085103.

Mannarino, A. & Mantegazza, P.
2014
Nonlinear aeroelastic reduced order modeling by recurrent neural networks. J. Fluid. Struct.
48, 103–121.

Mansfield, J. R., Knio, O. M. & Meneveau, C.
1998
A dynamic LES scheme for the vorticity transport equation: formulation and *a priori* tests. J. Comput. Phys.
145 (2), 693–730.

Marshall, J. S. & Beninati, M. L.
2003
Analysis of subgrid-scale torque for large-eddy simulation of turbulence. AIAA J.
41 (10), 1875–1881.

Maulik, R. & San, O.
2017a
A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech.
831, 151–181.

Maulik, R. & San, O.
2017b
A stable and scale-aware dynamic modeling framework for subgrid-scale parameterizations of two-dimensional turbulence. Comput. Fluids
158, 11–38.

Milano, M. & Koumoutsakos, P.
2002
Neural network modeling for near wall turbulent flow. J. Comput. Phys.
182 (1), 1–26.

Mohan, A. T. & Gaitonde, D. V.2018 A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks. arXiv:1804.09269.
Moser, R. D., Malaya, N. P., Chang, H., Zandonade, P. S., Vedula, P., Bhattacharya, A. & Haselbacher, A.
2009
Theoretically based optimal large-eddy simulation. Phys. Fluids
21 (10), 105104.

Parish, E. J. & Duraisamy, K.
2016
A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys.
305, 758–774.

Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B. R., Girvan, M. & Ott, E.
2018
Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. Chaos
28 (4), 041101.

Piomelli, U., Cabot, W. H., Moin, P. & Lee, S.
1991
Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids
3 (7), 1766–1771.

Raissi, M. & Karniadakis, G. E.
2018
Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys.
357, 125–141.

Sagaut, P.
2006
Large Eddy Simulation for Incompressible Flows: An Introduction. Springer.

San, O. & Maulik, R.
2018
Neural network closures for nonlinear model order reduction. Adv. Comput. Math.; doi:10.1007/s10444-018-9590-z.
San, O. & Staples, A. E.
2012
High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids
63, 105–127.

San, O., Staples, A. E. & Iliescu, T.
2013
Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model. Ocean Model.
63, 1–20.

Sarghini, F., De Felice, G. & Santini, S.
2003
Neural networks based subgrid scale modeling in large eddy simulations. Comput. Fluids
32 (1), 97–108.

Schaeffer, H.
2017
Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. Lond. A
473 (2197), 20160446.

Singh, A. P., Medida, S. & Duraisamy, K.
2017
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J.
55 (7), 2215–2227.

Smagorinsky, J.
1963
General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev.
91 (3), 99–164.

Tracey, B. D., Duraisamy, K. & Alonso, J. J.
2015
A machine learning strategy to assist turbulence model development. In 53rd AIAA Aerospace Sciences Meeting; 5–9 January 2015, Paper no: 2015-1287, American Institute of Aeronautics and Astronautics SciTech Forum, Kissimmee, FL.

Vorobev, A. & Zikanov, O.
2008
Smagorinsky constant in LES modeling of anisotropic MHD turbulence. Theor. Comput. Fluid Dyn.
22 (3–4), 317–325.

Vreman, A. W.
2004
An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids
16 (10), 3670–3681.

Wan, Z. Y., Vlachas, P., Koumoutsakos, P. & Sapsis, T.
2018
Data-assisted reduced-order modeling of extreme events in complex dynamical systems. PloS One
13 (5), e0197704.

Wang, J.-X., Wu, J., Ling, J., Iaccarino, G. & Xiao, H.2017*a* A comprehensive physics-informed machine learning framework for predictive turbulence modeling. arXiv:1701.07102.
Wang, J.-X., Wu, J.-L. & Xiao, H.
2017b
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids
2 (3), 034603.

Weatheritt, J. & Sandberg, R. D.
2017
Hybrid Reynolds-averaged/large-eddy simulation methodology from symbolic regression: formulation and application. AIAA J.
55 (11), 3734–3746.

Wu, J.-L., Xiao, H. & Paterson, E.2018*a* Data-driven augmentation of turbulence models with physics-informed machine learning. arXiv:1801.02762.
Wu, J.-L., Xiao, H. & Paterson, E.
2018b
Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids
3 (7), 074602.

Xiao, H., Wu, J.-L., Wang, J.-X., Sun, R. & Roy, C. J.
2016
Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: a data-driven, physics-informed Bayesian approach. J. Comput. Phys.
324, 115–136.