Skip to main content
×
Home
    • Aa
    • Aa

A sufficient condition for the instability of columnar vortices

  • S. Leibovich (a1) and K. Stewartson (a2)
Abstract

The inviscid instability of columnar vortex flows in unbounded domains to three-dimensional perturbations is considered. The undisturbed flows may have axial and swirl velocity components with a general dependence on distance from the swirl axis. The equation governing the disturbance is found to simplify when the azimuthal wavenumber n is large. This permits us to develop the solution in an asymptotic expansion and reveals a class of unstable modes. The asymptotic results are confirmed by comparisons with numerical solutions of the full problem for a specific flow modelling the trailing vortex. It is found that the asymptotic theory predicts the most-unstable wave with reasonable accuracy for values of n as low as 3, and improves rapidly in accuracy as n increases. This study enables us to formulate a sufficient condition for the instability of columnar vortices as follows. Let the vortex have axial velocity W(r), azimuthal velocity V(r), where r is distance from the axis, let Ω be the angular velocity V/r, and let Γ be the circulation rV. Then the flow is unstable if $ V\frac{d\Omega}{dr}\left[ \frac{d\Omega}{dr}\frac{d\Gamma}{dr} + \left(\frac{dW}{dr}\right)^2\right] < 0.$

Copyright
References
Hide All
Barston, F. M. 1980 Circle theorem for inviscid steady flows Int. J. Eng. Sci. 18, 477489.
Brown, S. N. & Stewartson, K. 1978 The evolution of a small inviscid disturbance to a marginally stable stratified flow: stage two. Proc. R. Soc. Land A 363, 175194.
Brown, S. N. & Stewartson, K. 1900 On the secular stability of a regular Rossby neutral mode Geophys. Astrophys. Fluid Dyn. 14, 118.
Cotton, F. W. & Salwen, H. 1981 Linear stability of rotating Hagen–-Poiseuille flow J. Fluid Mech. 108, 101125.
Duck, P. W. & Foster, M. R. 1980 The inviscid stability of a trailing line vortex Z. angew. Math. Phys. 31, 523530.
Escudier, M. P., Bornstein, J. & Zehnder, N. 1980 Observations and LDA measurements of confined vortex flow J. Fluid Mech. 98, 4963.
Faler, J. H. & Leibovich, S. 1977 An experimental map of the internal structure of a vortex breakdown J. Fluid Mech. 86, 313335.
Foster, M. R. & Duck, P. W. 1982 The inviscid stability of Long's vortex. Submitted to Phys. Fluids.
Garg, A. K. & Leibovich, S. 1979 Spectral characteristics of vortex breakdown flowfields Phys. Fluids 22, 20532064.
Hall, M. G. 1972 Vortex breakdown Ann. Rev. Fluid Mech. 4, 195218.
Howard, L. N. 1961 Note on a paper by John W. Miles J. Fluid Mech. 10, 509512.
Howard, L. N. & Gupta, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling flows J. Fluid Mech. 14, 463476.
Joseph, D. D. 1976 Stability of Fluid Motions I. Springer.
Leibovich, S. 1978 The structure of vortex breakdown Ann. Rev. Fluid Mech. 10, 221246.
Lessen, M. & Paillet, F. 1974 The stability of a trailing line vortex. Part 2. Viscous theory J. Fluid Mech. 65, 769779.
Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex J. Fluid Mech. 63, 753763.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Long, R. R. 1958 Vortex motion in a viscous fluid J. Met. 15, 108112.
Long, R. R. 1961 A vortex in an infinite viscous fluid J. Fluid Mech. 11, 611624.
Ludwieg, H. 1961 Ergänzung zu der Arbeit: ‘Stabilität der Strömung in einem zylindrischen Ringraum’. Z. Flugwiss. 9, 359361.
Maslowe, S. A. 1974 Instability of rigidly rotating flows to non-axisymmetric disturbances J. Fluid Mech. 64, 303317.
Maslowe, J. A. & Stewartson, K. 1982 On the linear inviscid stability of rotating Poiseuille flow. Phys. Fluids (to appear).
Pedley, T. J. 1968 Instability of rapidly rotating shear flows to non-axisymmetric disturbances J. Fluid Mech. 31, 603614.
Singh, P. I. & Uberoi, M. S. 1976 Experiments on vortex stability Phys. Fluids 19, 18581863.
Stewartson, K. 1982 The stability of swirling flows at large Reynolds number when subjected to disturbances with large azimuthal wavenumber. Phys. Fluids 19531957.
Warren, F. W. 1978 Hermitian forms and eigenvalue bounds Stud. Appl. Math. 59, 249281.
Watts, H. A., Scott, M. R. & Lord, M. E. 1978 Computational solution of complex valued boundary problems. Sandia Labs, Albuquerque, NM, Rep. SAND 78–1501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 43 *
Loading metrics...

Abstract views

Total abstract views: 129 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.