Skip to main content Accessibility help
×
Home

Superfluid spherical Couette flow

  • C. PERALTA (a1) (a2), A. MELATOS (a2), M. GIACOBELLO (a3) and A. OOI (a4)

Abstract

We solve numerically for the first time the two-fluid Hall–Vinen–Bekarevich–Khalatnikov (HVBK) equations for an He-II-like superfluid contained in a differentially rotating spherical shell, generalizing previous simulations of viscous spherical Couette flow (SCF) and superfluid Taylor–Couette flow. The simulations are conducted for Reynolds numbers in the range 1 × 102Re≤3 × 104, rotational shear 0.1≤ΔΩ/Ω≤0.3, and dimensionless gap widths 0.2≤δ≤0.5. The system tends towards a stationary but unsteady state, where the torque oscillates persistently, with amplitude and period determined by δ and ΔΩ/Ω. In axisymmetric superfluid SCF, the number of meridional circulation cells multiplies as Re increases, and their shapes become more complex, especially in the superfluid component, with multiple secondary cells arising for Re > 103. The torque exerted by the normal component is approximately three times greater in a superfluid with anisotropic Hall–Vinen (HV) mutual friction than in a classical viscous fluid or a superfluid with isotropic Gorter–Mellink (GM) mutual friction. HV mutual friction also tends to ‘pinch’ meridional circulation cells more than GM mutual friction. The boundary condition on the superfluid component, whether no slip or perfect slip, does not affect the large-scale structure of the flow appreciably, but it does alter the cores of the circulation cells, especially at lower Re. As Re increases, and after initial transients die away, the mutual friction force dominates the vortex tension, and the streamlines of the superfluid and normal fluid components increasingly resemble each other. In non-axisymmetric superfluid SCF, three-dimensional vortex structures are classified according to topological invariants. For misaligned spheres, the flow is focal throughout most of its volume, except for thread-like zones where it is strain-dominated near the equator (inviscid component) and poles (viscous component). A wedge-shaped isosurface of vorticity rotates around the equator at roughly the rotation period. For a freely precessing outer sphere, the flow is equally strain- and vorticity-dominated throughout its volume. Unstable focus/contracting points are slightly more common than stable node/saddle/saddle points in the viscous component, but not in the inviscid component. Isosurfaces of positive and negative vorticity form interlocking poloidal ribbons (viscous component) or toroidal tongues (inviscid component) which attach and detach at roughly the rotation period.

Copyright

References

Hide All
Andersson, N. & Comer, G. L. 2006 A flux-conservative formalism for convective and dissipative multi-fluid systems, with application to Newtonian superfluid neutron stars. Class. Quant. Grav. 23, 55055529.
Andronikashvili, E. L. & Mamaladze, Y. G. 1966 Quantization of macroscopic motions and hydrodynamics of rotating helium II. Rev. Mod. Phys. 38, 567625.
Bagchi, P. 2002 Particle dynamics in inhomegeneous flow at moderate to high Reynolds number. PhD thesis, University of Illinois at Urbana-Champaign.
Bagchi, P. & Balachandar, S. 2002 Steady planar straining flow past a rigid sphere at moderate Reynolds number. J. Fluid. Mech. 466, 365407.
Barenghi, C. F. 1992 Vortices and the Couette flow of helium II. Phys. Rev. B 45, 22902293.
Barenghi, C. F. 1995 Superfluid Rayleigh criterion. Phys. Rev. B 52, 35963600.
Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. 1983 Friction on quantized vortices in helium II. A review. J. Low Temp. Phys. 52, 189246.
Barenghi, C. F. & Jones, C. A. 1988 The stability of the Couette flow of helium II. J. Fluid Mech. 197, 551569.
Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. 2001 Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, vol. 571. Springer.
Bekarevich, I. L. & Khalatnikov, I. M. 1961 A phenomenological derivation of the equations of vortex motion in He II. Sov. Phys. JETP 13, 643646.
Bell, J. B., Colella, P. & Glaz, H. M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257283.
Belyaev, Yu. N., Monakhov, A. A. & Yavorskaya, I. M. 1978 Stability of spherical Couette flow in thick layers when the inner sphere revolves. Fluid Dyn. 2, 162168.
Bonnet, J. P. & Alziary de Roquefort, T. 1976 Ecoulement entre deux sphéres concentriques en rotation. J. Méc. 15, 373397.
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.
Brown, D. L., Cortez, R. & Minion, M. L. 2001 Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168, 464499.
Bühler, K. 1990 Symmetric and asymmetric Taylor vortex flow in spherical gaps. Acta Mech. 81, 338.
Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics. Springer.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids 2, 765777.
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22, 745762.
D'Alessandro, F., McCulloch, P. M., Hamilton, P. A. & Deshpande, A. A. 1995 The timing noise of 45 southern pulsars. Mon. Not. R. Astron. Soc. 277, 10331046.
Dennis, S. C. R. & Quartapelle, L. 1984 Finite difference solution to the flow between two rotating spheres. Comput. Fluids 12, 7792.
Dennis, S. C. R. & Singh, S. N. 1978 Calculation of the flow between two rotating spheres by the method of series truncation. J. Comput. Phys. 28, 297314.
Dimotakis, E. 1972 Investigation of supercritial heat flow in helium ii. PhD thesis, California Institute of Technology.
Don, W. S. 1994 Numerical study of pseudospectral methods in shock wave applications. J. Comput. Phys. 110, 103111.
Don, W. S. & Solomonoff, A. 1995 Accuracy and speed in computing the Chebyshev collocation derivative. SIAM J. Sci. Comput. 16, 12531268.
Donnelly, R. J. 2005 Quantized Vortices in Helium II. Cambridge University Press.
Donnelly, R. J. & Barenghi, C. F. 1998 The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 12171274.
Dumas, G. 1991 Study of spherical Couette flow via 3-d spectral simulations: large and narrow-gap flows and their transitions. PhD thesis, California Institute of Technology.
Dumas, G. & Leonard, A. 1994 A divergence-free spectral expansion method for three-dimensional flows in spherical-gap geometries. J. Comput. Phys. 111, 205219.
Egbers, C. & Rath, H. J. 1995 The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech. 111, 125140.
Fornberg, B. 1998 A Practical Guide to Pseudospectral Methods. Cambridge University Press.
Fornberg, B. & Merrill, D. 1997 Comparison of finite difference- and pseudospectral methods for convective flow over a sphere. Geophys. Res. Lett. 24, 32453248.
Frana, K., Stiller, J. & Grundmann, R. 2005 Taylor–Görtler in the flow driven by a rotating magnetic field in a cylindrical container. J. Visual. Japan 8, 323330.
Giacobello, M. 2005 Wake structure behind a tranversely rotating sphere at moderate Reynolds numbers. PhD thesis, University of Melbourne.
Glaberson, W. I., Johnson, W. W. & Ostermeier, R. M. 1974 Instability of a vortex array in He II. Phys. Rev. Lett. 33, 11971200.
Gorter, C. J. & Mellink, J. H. 1949 On the irreversible processes in liquid helium II. Physica 85, 285304.
Green, A. E. & Naghdi, P. M. 1967 A theory of mixtures. Arch. Rat. Mech. Anal. 24, 243263.
Hall, H. E. 1960 The rotation of liquid helium II. Adv. Phys. 9, 89146.
Hall, H. E. & Vinen, W. F. 1956 a The rotation of liquid helium II. I. Experiments on the propagation of second sound in uniformly rotating helium. Proc. R. Soc. Lond. A 238, 204214.
Hall, H. E. & Vinen, W. F. 1956 b The rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium. Proc. R. Soc. Lond. A 238, 215234.
Henderson, K. & Barenghi, C. F. 1995 Numerical methods for two-fluid hydrodynamics: application to the Taylor vortex flow of superfluid helium II. J. Low Temp. Phys. 98, 351381.
Henderson, K. L. & Barenghi, C. F. 2000 The anomalous motion of superfluid helium in a rotating cavity. J. Fluid Mech. 406, 199219.
Henderson, K. L. & Barenghi, C. F. 2004 Superfluid Couette flow in an enclosed annulus. Theor. Comput. Fluid Dyn. 18, 183196.
Henderson, K. L., Barenghi, C. F. & Jones, C. A. 1995 Nonlinear Taylor–Couette flow of helium II. J. Fluid Mech. 283, 329340.
Hills, R. N. & Roberts, P. H. 1972 On Landau's two-fluid model for helium II. J. Inst. Maths Applics. 9, 5667.
Hills, R. N. & Roberts, P. H. 1977 Superfluid mechanics for a high density of vortex lines. Arch. Rat. Mech. Anal. 66, 4371.
Hobbs, G. 2002 Searches for and timing of radio pulsars. PhD thesis, University of Manchester.
Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E. & Jordan, C. 2004 Long-term timing observations of 374 pulsars. Mon. Not. R. Astron. Soc. 353, 13111344.
Hollerbach, R. 2000 A spectral solution of the magneto-convection equations in spherical geometry. Intl J. Numer. Meth. Fluids 32, 773797.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program (SEE N89-24538 18-34), pp. 193–208.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jones, D. I. & Andersson, N. 2001 Freely precessing neutron stars: model and observations. Mon. Not. R. Astron. Soc. 324, 811824.
Jones, D. I. & Andersson, N. 2002 Gravitational waves from freely precessing neutron stars. Mon. Not. R. Astron. Soc. 331, 203220.
Jou, D. & Mongiovì, M. S. 2004 Phenomenological description of counterflow superfluid turbulence in rotating containers. Phys. Rev. B 69, 094513.
Junk, M. & Egbers, C. 2000 Isothermal spherical Couette flow. Physics of Rotating Fluids. Lecture Notes in Physics, vol. 549, p. 215. Springer.
Khalatnikov, I. M. 1965 Introduction to the Theory of Superfluidity. Benjamin, New York.
Khlebuytin, G. N. 1968 Stability of fluid motion between a rotating and a stationary concentric sphere. Fluid Dyn. 3, 3132.
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Landau, L. D. & Lifshitz, E. M. 1969 Mechanics, 2nd edn. Pergamon.
Link, B. 2003 Constraining hadronic superfluidity with neutron star precession. Phys. Rev. Lett. 91 (10), 101101.
Liu, M., Blohm, C., Egbers, C., Wulf, P. & Rath, H. J. 1996 Taylor vortices in wide spherical shells. Phys. Rev. Lett. 77, 286289.
Lorimer, D. R. & Kramer, M. 2004 Handbook of Pulsar Astronomy. Cambridge University Press.
Loukopoulos, V. C. & Karahalios, G. T. 2004 Taylor vortices in annular spherical flow at large aspect ratios. Phys. Fluids 16, 27082711.
Lyne, A. G. & Graham-Smith, F. 2006 Pulsar Astronomy. Cambridge University Press.
Lyne, A. G., Shemar, S. L. & Smith, F. G. 2000 Statistical studies of pulsar glitches. Mon. Not. R. Astron. Soc. 315, 534542.
Marcus, P. & Tuckerman, L. 1987 a Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech. 185, 130.
Marcus, P. & Tuckerman, L. 1987 b Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech. 185, 3165.
Mathieu, P., Marechal, J. C. & Simon, Y. 1980 Spatial distribution of vortices and metastable states in rotating He II. Phys. Rev. B 22, 42934306.
Melatos, A. 1997 Spin-down of an oblique rotator with a current-starved outer magnetosphere. Mon. Not. R. Astron. Soc. 288, 10491059.
Melatos, A., Peralta, C. & Wyithe, J. S. B. 2007 Avalanche dynamics of radio pulsar glitches. Astrophys. J. 672, 11031118.
Merilees, P. E. 1973 The pseudospectral approximation to the shallow water equations on a sphere. Atmosphere 11, 1320.
Metcalfe, R. W., Menon, S. & Hussain, A. K. M. F. 1985 Coherent structures in a turbulent mixing layer – a comparison between direct numerical simulations and experiments. In Symp. on Turbulent Shear Flows, 5th, Ithaca, NY, August 7–9, 1985, Proc. (A86-30201 13-34), University Park, PA, Pennsylvania State University, pp. 4.13–4.19. (ed. Dang, K. & Roy, P.).
Mittal, R. 1995 Study of flow past elliptic and circular cylinders using direct numerical simulation. PhD thesis, University of Illinois at Urbana-Champaign.
Mittal, R. 1999 A Fourier–Chebyshev spectral colloctation method for simulating flow past spheres and spheroids. Intl J. Numer. Meth. Fluids 30, 921937.
Mittal, R. & Balachandar, S. 1995 Generation of streamwise vortical structures in bluff body wakes. Phys. Rev. Lett. 75, 13001303.
Munson, B. R. & Joseph, D. D. 1971 Viscous incompressible flow between concentric rotating spheres. Part 2. Hydrodynamic stability. J. Fluid Mech. 49, 305318.
Nakabayashi, K. & Tsuchida, Y. 1988 Spectral study of the laminar–turbulent transition in spherical Couette flow. J. Fluid Mech. 194, 101132.
Nakabayashi, K., Tsuchida, Y. & Zheng, Z. 2002 a Characteristics of disturbances in the laminar–turbulent transition of spherical Couette flow. 1. Spiral Taylor–Gortler vortices and traveling waves for narrow gaps. Phys. Fluids 14, 39633972.
Nakabayashi, K., Zheng, Z. & Tsuchida, Y. 2002 b Characteristics of disturbances in the laminar–turbulent transition of spherical Couette flow. 2. New disturbances observed for a medium gap. Phys. Fluids 14, 39733982.
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.
Northby, J. A. & Donnelly, R. J. 1970 Detection of a vortex-free region in rotating liquid helium II. Phys. Rev. Lett. 25, 214217.
Orszag, S. A. 1971 a Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid Mech. 49, 75112.
Orszag, S. A. 1971 b On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28, 10741074.
Orszag, S. A. 1974 Fourier series on spheres. Mon. Weather Rev. 102, 5675.
Orszag, S. A., Israeli, M. & Deville, M. O. 1986 Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75111.
Ostriker, J. P. & Gunn, J. E. 1969 On the nature of pulsars. I. Theory. Astrophys. J. 157, 1395.
Pearson, C. E. 1967 A numerical study of the time-dependent viscous flow between two rotating spheres. J. Fluid Mech. 28, 323336.
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2005 Global three-dimensional flow of a neutron superfluid in a spherical shell in a neutron star. Astrophys. J. 635, 12241232.
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2006 a Gravitational radiation from nonaxisymmetric spherical Couette flow in a neutron star. Astrophys. J., Lett. 644, L53L56.
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2006 b Transitions between turbulent and laminar superfluid vorticity states in the outer core of a neutron star. Astrophys. J. 651, 10791091.
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2007 Deceleration of rotating superfluid in a spherical vessel: patches of turbulent-laminar vorticity. Phys. Fluids (to be submitted).
Peralta, C. A. 2006 Superfluid spherical Couette flow and rotational irregularities in pulsars. PhD thesis, University of Melbourne.
Proudman, I. 1956 The almost-rigid rotation of viscous fluid between concentric spheres. J. Fluid Mech. 1, 505516.
Reppy, J. D. 1965 Application of a superfluid gyroscope to the study of critical velocities in liquid helium near the λ transition. Phys. Rev. Lett. 14, 733735.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Scott, D. M., Finger, M. H. & Wilson, C. A. 2003 Characterization of the timing noise of the Crab pulsar. Mon. Not. R. Astron. Soc. 344, 412430.
Sedrakian, A. 2005 Type-I superconductivity and neutron star precession. Phys. Rev. D 71 (8), 083003.
Shaham, J. 1977 Free precession of neutron stars – role of possible vortex pinning. Astrophys. J. 214, 251260.
Shaham, J. 1986 Free precession in quasi-periodic oscillators. Astrophys. J. 310, 780785.
Shemar, S. L. & Lyne, A. G. 1996 Observations of pulsar glitches. Mon. Not. R. Astron. Soc. 282, 677690.
Sonin, E. B. 1987 Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys. 59, 87155.
Soria, J. & Cantwell, B. J. 1994 Topological visualisation of focal structures in free shear flows. Appl. Sci. Res. 53, 375.
Spitkovsky, A. 2004 Electrodynamics of pulsar magnetospheres. In IAU Symp. (ed. Camilo, F. & Gaensler, B. M.), p. 357.
Stauffer, D. & Fetter, A. L. 1968 Distribution of vortices in rotating helium II. Phys. Rev. 168, 156159.
Streett, C. L. & Hussaini, M. Y. 1991 A numerical simulation of the appearance of chaos in finite-length Taylor–Couette flow. Appl. Numer. Math. 7, 4171.
Swanson, C. E., Barenghi, C. F. & Donnelly, R. J. 1983 Rotation of a tangle of quantized vortex lines in He II. Phys. Rev. Lett. 50, 190193.
Swanson, C. J. 1998 Taylor–Couette flow of helium II. Intl J. Engng Sci. 36, 14811492.
Swarztrauber, P. N. 1979 On the spectral approximation of discrete scalar and vector functions on the sphere. SIAM J. Numer. Anal. 16, 934949.
Trefethen, L. N. 2001 Spectral Methods in Matlab. SIAM.
Tsakadze, D. S. & Tsakadze, S. D. 1973 Measurement of the relaxation time on acceleration of vessels with helium II and superfluidity in pulsars. Sov. Phys., J. Exp. Theor. Phys. 64, 18161823.
Tsakadze, D. S. & Tsakadze, S. D. 1975 Superfluidity in pulsars. Sov. Phys. Uspekhi 115, 503519.
Tsakadze, J. S. & Tsakadze, S. J. 1972 Relaxation phenomena at accelaration of rotation of a spherical vessel with helium II and relaxation in pulsars. Phys. Lett. A 41, 197199.
Tsakadze, J. S. & Tsakadze, S. J. 1974 On the problem of relaxation time determination in superfluids when their rotation is accelerated. Phys. Lett. A 47, 477478.
Tsakadze, J. S. & Tsakadze, S. J. 1980 Properties of slowly rotating helium II and the superfluidity of pulsars. J. Low Temp. Phys. 39, 649688.
Tsubota, M., Araki, T. & Barenghi, C. F. 2003 Rotating superfluid turbulence. Phys. Rev. Lett. 90 (20, 205301.
Umscheid, L. & Sankar Rao, M. 1971 Further test of a grid system for global numerical prediction. Mon. Weather Rev. 99, 686690.
Vinen, W. F. 1957 a Mutual friction in a heat current in liquid helium II. I. Experiments on steady heat currents. Proc. R. Soc. Lond. A 240, 114127.
Vinen, W. F. 1957 b Mutual friction in a heat current in liquid helium II. II. Experiments on trasient effects Proc. R. Soc. Lond. A 240, 128143.
Vinen, W. F. 1957 c Mutual friction in a heat current in liquid helium II. III. Theory of mutual friction Proc. R. Soc. Lond. A 242, 493515.
Voigt, R. G., Gottlieb, D. & Hussaini, M. Y. 1984 Spectral Methods for Partial Differential Equations. SIAM.
Yavorskaya, I. M., Belayev, Yu. N. & Monakhov, A. A. 1986 Hydrodynamical Stability in rotating spherical layers – application to dynamics of planetary-atmospheres. Acta Astronaut. 13, 433440.
Yee, Y. K. 1981 Solution of Poisson's equation on a sphere by truncated double Fourier series. Mon. Weather Rev. 109, 501505.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Superfluid spherical Couette flow

  • C. PERALTA (a1) (a2), A. MELATOS (a2), M. GIACOBELLO (a3) and A. OOI (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed