Skip to main content Accessibility help
×
Home

Supersaturation fluctuations in moist turbulent Rayleigh–Bénard convection: a two-scalar transport problem

  • Kamal Kant Chandrakar (a1), Will Cantrell (a1), Steven Krueger (a2), Raymond A. Shaw (a1) and Scott Wunsch (a3)...

Abstract

Moist Rayleigh–Bénard convection with water saturated boundaries is explored using a One-Dimensional Turbulence model. The system involves both temperature $T$ and water vapour pressure $e_{v}$ as driving scalars. The emphasis of the work is on a supersaturation $s$ , a nonlinear combination of $T$ and $e_{v}$ that is crucial to cloud formation. Its mean as well as fluctuation statistics determine cloud droplet growth and therefore precipitation formation and cloud optical properties. To explore the role of relative scalar diffusivities for temperature ( $D_{t}$ ) and water vapour ( $D_{v}$ ), three different regimes are considered: $D_{v}>D_{t}$ , $D_{v}\approx D_{t}$ and $D_{v}<D_{t}$ . Scalar fluxes (Nusselt number, $Nu$ and Sherwood number, $Sh$ ) and their scalings with moist Rayleigh number $Ra_{moist}$ are consistent with previous studies of one-component convection. Moreover, variances of the scalars in the bulk region increase with their diffusivities and also reasonably follow derived scaling expressions. Eulerian properties plotted in $(T,e_{v})$ coordinates have a different slope compared to an idealized mixing process. Additionally, the scalars are highly correlated, even in the cases of high relative diffusivities (factor of four) $D_{v}$ and $D_{t}$ . Based on the above fact and the scaling relation of the scalars, the supersaturation variance is found to vary approximately as $Ra_{moist}^{5/3}$ , in agreement with numerical results. Finally, the supersaturation profile in the boundary layer is explored and compares well with scalar boundary layer models. A sharp peak appears in the boundary-layer-supersaturation profile, not only in the variance but also in the mean profile, due to relative diffusivities of the scalars.

Copyright

Corresponding author

Email addresses for correspondence: kkchandr@mtu.edu, rashaw@mtu.edu

References

Hide All
Ahlers, G., Bodenschatz, E., Funfschilling, D., Grossmann, S., He, X., Lohse, D., Stevens, R. J. A. M. & Verzicco, R. 2012 Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109 (11), 114501.
Bejan, A. 2013 Convection Heat Transfer. John Wiley & Sons.
Belmonte, A., Tilgner, A. & Libchaber, A. 1993 Boundary layer length scales in thermal turbulence. Phys. Rev. Lett. 70 (26), 40674070.
Bogenschutz, P. A. & Krueger, S. K. 2013 A simplified pdf parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst. 5 (2), 195211.
Bohren, C. F. & Albrecht, B. A. 1998 Atmospheric Thermodynamics. Oxford University Press.
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part I. Thermodynamics and linear solutions. J. Atmos. Sci. 44 (14), 18091827.
Bretherton, C. S. 1988 A theory for nonprecipitating convection between two parallel plates. Part II. Nonlinear theory and cloud field organization. J. Atmos. Sci. 45 (17), 23912415.
Breuer, M., Wessling, S., Schmalzl, J. & Hansen, U. 2004 Effect of inertia in Rayleigh–Bénard convection. Phys. Rev. E 69 (2), 026302.
Brown, R. A. 1980 Longitudinal instabilities and secondary flows in the planetary boundary layer: a review. Rev. Geophys. 18 (3), 683697.
Burns, P. & Meiburg, E. 2012 Sediment-laden fresh water above salt water: linear stability analysis. J. Fluid Mech. 691, 279314.
Burrows, A., Marley, M., Hubbard, W. B., Lunine, J. I., Guillot, T., Saumon, D., Freedman, R., Sudarsky, D. & Sharp, C. 1997 A nongray theory of extrasolar giant planets and brown dwarfs. Astrophys. J. 491 (2), 856875.
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.
Chandrakar, K. K., Cantrell, W., Chang, K., Ciochetto, D., Niedermeier, D., Ovchinnikov, M., Shaw, R. A. & Yang, F. 2016 Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl Acad. Sci. USA 113 (50), 1424314248.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.
Deardorff, J. W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27 (8), 12111213.
Du Puits, R., Resagk, C., Tilgner, A., Busse, F. H. & Thess, A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.
Echekki, T., Kerstein, A. R., Dreeben, T. D. & Chen, J.-Y. 2001 One-dimensional turbulence simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combust. Flame 125 (3), 10831105.
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press on Demand.
Fleischer, A. S. & Goldstein, R. J. 2002 High-Rayleigh-number convection of pressurized gases in a horizontal enclosure. J. Fluid Mech. 469, 112.
Golaz, J.-C., Larson, V. E. & Cotton, W. R. 2002a A PDF-based model for boundary layer clouds. Part I. Method and model description. J. Atmos. Sci. 59 (24), 35403551.
Golaz, J.-C., Larson, V. E. & Cotton, W. R. 2002b A PDF-based model for boundary layer clouds. Part II. Model results. J. Atmos. Sci. 59 (24), 35523571.
Gonzalez-Juez, E., Kerstein, A. R. & Lignell, D. O. 2011 Fluxes across double-diffusive interfaces: a one-dimensional-turbulence study. J. Fluid Mech. 677, 218254.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.
Howard, L. N. 1963 Heat transport by turbulent convection. J. Fluid Mech. 17 (3), 405432.
Howard, L. N. 1966 Convection at high Rayleigh number. In Applied Mechanics, pp. 11091115. Springer.
Huppert, H. E. & Turner, J. S. 1981 Double-diffusive convection. J. Fluid Mech. 106, 299329.
Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J. & Özsoy, E. 2003 The diffusive regime of double-diffusive convection. Prog. Oceanogr. 56 (3–4), 461481.
Kerstein, A. R. 1999 One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277334.
Kreidberg, L., Bean, J. L., Désert, J.-M., Benneke, B., Deming, D., Stevenson, K. B., Seager, S., Berta-Thompson, Z., Seifahrt, A. & Homeier, D. 2014 Clouds in the atmosphere of the super-earth exoplanet GJ 1214b. Nature 505 (7481), 6972.
Krueger, S. K. 1993 Linear eddy modeling of entrainment and mixing in stratus clouds. J. Atmos. Sci. 50 (18), 30783090.
Krueger, S. K., Su, C.-W. & McMurtry, P. A. 1997 Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci. 54 (23), 26972712.
Kulmala, M., Rannik, Ü., Zapadinsky, E. L. & Clement, C. F. 1997 The effect of saturation fluctuations on droplet growth. J. Aero. Sci. 28 (8), 13951409.
Lamb, D. & Shaw, R. A. 2016 Visualizing vapor pressure: a mechanical demonstration of liquid–vapor phase equilibrium. Bull. Am. Meteorol. Soc. 97 (8), 13551362.
Lilly, D. K. 1968 Models of cloud-topped mixed layers under a strong inversion. Q. J. R. Meteorol. Soc. 94 (401), 292309.
Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225 (1161), 196212.
Marley, M. S., Ackerman, A. S., Cuzzi, J. N. & Kitzmann, D. 2013 Clouds and hazes in exoplanet atmospheres. Compar. Climatol. Terr. Planets 1, 367391.
Mellado, J. P. 2017 Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech. 49, 145169.
Mellado, J. P., Puche, M. & van Heerwaarden, C. C. 2017 Moisture statistics in free convective boundary layers growing into linearly stratified atmospheres. Q. J. R. Meteorol. Soc. 143 (707), 24032419.
Mellor, G. L. 1977 The Gaussian cloud model relations. J. Atmos. Sci. 34 (2), 356358.
Moeng, C.-H. & Rotunno, R. 1990 Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci. 47 (9), 11491162.
Niedermeier, D., Chang, K., Cantrell, W., Chandrakar, K. K., Ciochetto, D. & Shaw, R. A. 2018 Observation of a link between energy dissipation rate and oscillation frequency of the large-scale circulation in dry and moist Rayleigh–Bénard turbulence. Phys. Rev. Fluids 3 (8), 083501.
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404 (6780), 837.
Niemela, J. J. & Sreenivasan, K. R. 2006 Turbulent convection at high Rayleigh numbers and aspect ratio 4. J. Fluid Mech. 557, 411422.
Pauluis, O. & Schumacher, J. 2011 Self-aggregation of clouds in conditionally unstable moist convection. Proc. Natl Acad. Sci. USA 108 (31), 1262312628.
Pauluis, O. & Schumacher, J. 2010 Idealized moist Rayleigh–Bénard convection with piecewise linear equation of state. Commun. Math. Sci. 8 (1), 295319.
Politovich, M. K. & Cooper, W. A. 1988 Variability of the supersaturation in cumulus clouds. J. Atmos. Sci. 45 (11), 16511664.
Randall, D. A. 1987 Turbulent fluxes of liquid water and buoyancy in partly cloudy layers. J. Atmos. Sci. 44 (5), 850858.
Schlichting, H., Gersten, K., Krause, E., Oertel, H. & Mayes, K. 1955 Boundary-Layer Theory, vol. 7. Springer.
Schmitt, R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26 (1), 255285.
Siebert, H. & Shaw, R. A. 2017 Supersaturation fluctuations during the early stage of cumulus formation. J. Atmos. Sci. 74 (4), 975988.
Sommeria, G. & Deardorff, J. W. 1977 Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci. 34 (2), 344355.
Sorbjan, Z. 1989 Structure of the Atmospheric Boundary Layer. Prentice Hall.
Stechmann, S. N. 2014 Multiscale eddy simulation for moist atmospheric convection: preliminary investigation. J. Comput. Phys. 271, 99117.
Stevens, B. 2005 Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33, 605643.
Stratmann, F., Kiselev, A., Wurzler, S., Wendisch, M., Heintzenberg, J., Charlson, R. J., Diehl, K., Wex, H. & Schmidt, S. 2004 Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions. J. Atmos. Ocean. Technol. 21 (6), 876887.
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47 (4), R2253.
Townsend, A. A. 1959 Temperature fluctuations over a heated horizontal surface. J. Fluid Mech. 5 (2), 209241.
Verzicco, R. & Camussi, R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech. 383, 5573.
Wunsch, S. & Kerstein, A. 2001 A model for layer formation in stably stratified turbulence. Phys. Fluids 13 (3), 702712.
Wunsch, S. & Kerstein, A. R. 2005 A stochastic model for high-Rayleigh-number convection. J. Fluid Mech. 528, 173205.
Wyngaard, J. C., Pennell, W. T., Lenschow, D. H. & LeMone, M. A. 1978 The temperature-humidity covariance budget in the convective boundary layer. J. Atmos. Sci. 35 (1), 4758.
Wyngaard, J. C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24 (1), 205234.
Xia, K.-Q., Lam, S. & Zhou, S.-Q. 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88 (6), 064501.
Zaussinger, F. & Spruit, H. C. 2013 Semiconvection: numerical simulations. Astron. Astrophys. 554, A119.
Zhou, Q., Stevens, R. J. A. M., Sugiyama, K., Grossmann, S., Lohse, D. & Xia, K.-Q. 2010 Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 664, 297312.
Zhou, Q. & Xia, K.-Q. 2010 Measured instantaneous viscous boundary layer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 104 (10), 104301.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Supersaturation fluctuations in moist turbulent Rayleigh–Bénard convection: a two-scalar transport problem

  • Kamal Kant Chandrakar (a1), Will Cantrell (a1), Steven Krueger (a2), Raymond A. Shaw (a1) and Scott Wunsch (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed