Hostname: page-component-54dcc4c588-br6xx Total loading time: 0 Render date: 2025-10-01T10:16:10.024Z Has data issue: false hasContentIssue false

Supersonic turbulent boundary layer on a plate. Universal velocity and temperature defect laws and skin-friction law at moderate free-stream Mach numbers

Published online by Cambridge University Press:  01 October 2025

Igor Vigdorovich*
Affiliation:
Institute of Mechanics, Lomonosov Moscow State University, Michurinsky ave 1, 119192 Moscow, Russia
*
Corresponding author: Igor Vigdorovich, vigdorovich.igor@gmail.com

Abstract

We develop an asymptotic theory of a compressible turbulent boundary layer on a flat plate, in which the mean velocity and temperature profiles can be obtained as exact asymptotic solutions of the boundary-layer equations, which are closed using functional relations of a general form connecting the turbulent shear stress and turbulent enthalpy flux to the mean velocity and enthalpy gradients. The outer region of the boundary layer is considered at moderate supersonic free-stream Mach numbers, when the relative temperature difference across the layer is of order one. A special change of variables allows us to construct the solution in the outer region in the form of asymptotic expansions at large values of the logarithm of the Reynolds number based on the boundary-layer thickness. As a result of asymptotic matching of the solutions for the outer region and logarithmic sublayer, the velocity and temperature defect laws are obtained, which allow us to describe the profiles of these quantities in the outer and logarithmic regions by universal curves known for the boundary layer of an incompressible fluid. Similarity rules for the Reynolds-tensor components and root-mean-square enthalpy fluctuation are given. The recovery and Reynolds-analogy factors are calculated. A friction law is established that is valid under arbitrary wall-heat-transfer conditions.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Appelbaum, J., Gibis, T., Pirozzoli, S. & Wenzel, C. 2025 The onset of outer-layer self-similarity in turbulent boundary layers. J. Fluid Mech. 1015, A37.10.1017/jfm.2025.10363CrossRefGoogle Scholar
Cebeci, T. & Bradshaw, P. 1984 Physical and Computational Aspects of Convective Heat Transfer. Springer-Verlag, Inc 10.1007/978-3-662-02411-9CrossRefGoogle Scholar
Clauser, F.H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.10.1016/S0065-2156(08)70370-3CrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate–high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.10.1017/jfm.2022.574CrossRefGoogle Scholar
Cogo, M., Baù, U., Chinappi, M., Bernardini, M. & Picano, F. 2023 Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers. J. Fluid Mech. 974, A10.10.1017/jfm.2023.791CrossRefGoogle Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (2), 191226.10.1017/S0022112056000135CrossRefGoogle Scholar
Favre, A. 1969 Statistical equations of turbulent gases. In SIAM Problems of Hydrodynamics and Continuum Mechanics (Sedov 60th Birthday Volume), pp. 231266.Google Scholar
Fernholz, H.H. 1969 Geschwindigkeitsprofile, temperaturprofile und halbempirische gesetze in kompressiblen turbulenten grenzschichten bei konstantem druck. Ing. Arch. 38, 311328.10.1007/BF00536174CrossRefGoogle Scholar
Fernholz, H.H. & Finley, P.J. 1977 A critical compilation of compressible turbulent boundary layer data. AGARDograph No. 223. AGARD.Google Scholar
Fernholz, H.H. & Finley, P.J. 1980 A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. AGARDograph No. 253. AGARD.Google Scholar
Fernholz, H.H., Finley, P.J. & Mikulla, V. 1981 A further compilation of compressible boundary layer data with a survey of turbulence data. AGARDograph No. 263. AGARD.Google Scholar
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2024 Estimating mean profiles and fluxes in high-speed turbulent boundary layers using inner/outer-layer scalings. AIAA J. 62 (2), 848853.10.2514/1.J063335CrossRefGoogle Scholar
He, J., Kazakia, J.Y. & Walker, J.D.A. 1995 An asymptotic two-layer model for supersonic turbulent boundary layers. J. Fluid Mech. 295, 159198.10.1017/S0022112095001923CrossRefGoogle Scholar
He, J., Kazakia, J.Y., Ruban, A.I. & Walker, J.D.A. 1996 A model for adiabatic supersonic turbulent boundary layers. Theor. Comp. Fluid Dyn. 8 (5), 349364.10.1007/BF00456375CrossRefGoogle Scholar
Huang, P.G., Bradshaw, P. & Coakley, T.J. 1993 Skin friction and velocity profile family for compressible turbulent boundary layers. AIAA J. 31 (9), 16001604.10.2514/3.11820CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.10.1017/S0022112095004599CrossRefGoogle Scholar
von Kármán, T. 1930 Mechanische aenlichkeit und turbulenz. Nachr. Ges. Wiss. Göttingen, Math-Phys. Kl. 1930, 5876.Google Scholar
Kays, W.M. 1994 Turbulent Prandtl number – where are we? J. Heat Transfer 116 (2), 284295.10.1115/1.2911398CrossRefGoogle Scholar
Lusher, D.J. & Coleman, G.N. 2022 Numerical study of compressible wall-bounded turbulence – the effect of thermal wall conditions on the turbulent Prandtl number in the low-supersonic regime. Intl J. Comput. Fluid Dyn. 36 (9), 797815.10.1080/10618562.2023.2189247CrossRefGoogle Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence, (ed. A.J. Favre), pp. 367380. CNRS.Google Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 668, 120168.10.1017/jfm.2011.368CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2013 Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25, 021704.10.1063/1.4792164CrossRefGoogle Scholar
Rotta, J.C. 1950 Über die Theorie der Turbulenten Grenzschichten. Mitt. Max-Planck-Inst., Göttingen, No. 1. NACA TM 1344, 1953.Google Scholar
Rotta, J.C. 1964 Temperaturverteilungen in der turbulenten grenzschicht an der ebenen platte. Intl J. Heat Mass Transfer 7, 215228.10.1016/0017-9310(64)90086-9CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.10.1017/S0022112010003113CrossRefGoogle Scholar
Squire, W. 1964 Turbulent heat and mass transfer in smooth pipes. Intl J. Heat Mass Transfer 7 (10), 10691076.10.1016/0017-9310(64)90030-4CrossRefGoogle Scholar
Smits, A.J. & Dussauge, J.P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer Science and Business Media.Google Scholar
Spina, E.F. & Smits, A.J. 1987 Organized structures in a compressible turbulent boundary layer. J. Fluid Mech. 182, 85109.10.1017/S0022112087002258CrossRefGoogle Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18, 145160.10.2514/8.1895CrossRefGoogle Scholar
Van Driest, E.R. 1956 The problem of aerodynamic heating. Aeronaut. Engng. Rev. 15, 2641.Google Scholar
Van Driest, E.R. 1959 Turbulent flows and heat transfer. In High Speed Aerodynamics and Jet Propulsion, (ed. C.C. Lin), vol. V. Princeton University Press.Google Scholar
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. 2nd edn. The Parabolic Press.Google Scholar
Vigdorovich, I.I. 1993 Asymptotic analysis of turbulent boundary layer flow on a flat plate at high Reynolds numbers. Fluid Dyn. 28 (4), 514523.10.1007/BF01342686CrossRefGoogle Scholar
Vigdorovich, I.I. 2015 New formulation of the temperature defect law for turbulent boundary layers on a flat plate. Intl J. Heat Mass Transfer 84 (5), 653659.10.1016/j.ijheatmasstransfer.2015.01.070CrossRefGoogle Scholar
Vigdorovich, I.I. 2016 The Reynolds analogy and a new formulation of the temperature-defect law for a turbulent boundary layer on a plate. Dokl. Phys. 61, 6469.10.1134/S1028335815120125CrossRefGoogle Scholar
Vigdorovich, I.I. 2017 Turbulent thermal boundary layer on a plate. Reynolds analogy and heat transfer law over the entire range of Prandtl numbers. Fluid Dyn. 52 (5), 631645.10.1134/S0015462817050052CrossRefGoogle Scholar
Vigdorovich, I. 2023 a Supersonic turbulent boundary layer on a plate. I. Closure relations. Phys. Fluids 35 (11), 115122.10.1063/5.0166028CrossRefGoogle Scholar
Vigdorovich, I. 2023 b Supersonic turbulent boundary layer on a plate. II. Flow in the wall region and the Crocco integral. Phys. Fluids 35 (11), 115123.10.1063/5.0174389CrossRefGoogle Scholar
Vigdorovich, I. 2024 Supersonic turbulent boundary layer on a plate. III. Laws of the wall for velocity and temperature. Phys. Fluids 36 (8), 085179.10.1063/5.0219655CrossRefGoogle Scholar
Walz, A. 1966 Strömungs- Und Temperaturgrenzschichten. Braun Verlag, Karlsruhe. English trans.: Boundary Layers of Flow and Temperature. MIT Press.Google Scholar
Wenzel, C., Selent, B., Kloker, M. & Rist, U. 2018 DNS of compressible turbulent boundary layers and assessment of data/scaling-law quality. J. Fluid Mech. 842, 428468.10.1017/jfm.2018.179CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.10.1017/jfm.2021.888CrossRefGoogle Scholar
Wilcox, D.C. 2006 Turbulence Modeling for CFD, 3rd edn. DCW Industries.Google Scholar
Yaglom, A.M. 1979 Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu. Rev. Fluid Mech. 11 (1), 505540.10.1146/annurev.fl.11.010179.002445CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.10.2514/1.J057296CrossRefGoogle Scholar