Skip to main content
×
Home
    • Aa
    • Aa

The surprising relevance of a continuum description to granular clusters

  • M. Y. Louge (a1)
Abstract
Abstract

Nature shuns homogeneity. In turbulent clouds, industrial reactors and geophysical flows, discrete particles arrange in clusters, posing difficult challenges to theory. A persistent question is whether clusters can be modelled with continuum equations. Recent evidence presented by Mitrano et al. (J. Fluid Mech., vol. 738, 2014, R2) indicates that suitable equations can predict the formation of clusters in granular flows, despite violating the simplifying assumptions upon which they are based.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The surprising relevance of a continuum description to granular clusters
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The surprising relevance of a continuum description to granular clusters
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The surprising relevance of a continuum description to granular clusters
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: MYL3@cornell.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Agrawal , P. N. Loezos , M. Syamlal  & S. Sundaresan 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151185.

R. K. Agarwal , K.-Y. Yun  & R. Balakrishnan 2001 Beyond Navier–Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13, 30613085.

H. Alsmeyer 1976 Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497613.

H. Brenner 2005 Navier-Stokes revisited. Physica A 349, 60132.

N. Brilliantov , C. Salueña , T Schwager  & T. Pöschel 2004 Transient structures in a granular gas. Phys. Rev. Lett. 93, 134301.

J. Capecelatro  & O. Desjardins 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.

J. Chun , D. L. Koch , S. L. Rani , A. Ahluwalia  & L. R. Collins 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.

O. Desjardins , R. O. Fox  & P. Villedieu 2008 A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys. 227, 25142539.

K. Duncan , B. Mehlig , S. Östlund  & M. Wilkinson 2005 Clustering by mixing flows. Phys. Rev. Lett. 95, 240602.

R. O. Fox 2012 Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 4776.

I. Goldhirsch  & G. Zanetti 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 16191622.

C. J. Greenshields  & J. M. Reese 2007 The structure of shock waves as a test of Brenner’s modifications to the Navier–Stokes equations. J. Fluid Mech. 580, 407429.

E. Helland , H. Bournot , R. Occelli  & L. Tadrist 2007 Drag reduction and cluster formation in a circulating fluidised bed. Chem. Engng Sci. 62, 148158.

M. A. van der Hoef , M. van Sint Annaland , N. G. Deen  & J. A. M. Kuipers 2008 Numerical simulation of dense gas–solid fluidized beds: a multiscale modelling strategy. Annu. Rev. Fluid Mech. 40, 4770.

M. A. Hopkins , J. T. Jenkins  & M. Y. Louge 1993 On the structure of three-dimensional shear flows. Mech. Mater. 16, 179187.

J. T. Jenkins  & M. W. Richman 1988 Plane simple shear of smooth inelastic circular disks: the anisotropy of the second moment in the dilute and dense limits. J. Fluid Mech. 192, 313328.

J. T. Jenkins  & C. Zhang 2002 Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 12281235.

V. Kumaran 2006 The constitutive relation for the granular flow of rough particles, and its application to the flow down an inclined plane. J. Fluid Mech. 561, 142.

E. K. Longmire  & J. K. Eaton 1992 Structure of a particle-laden round jet. J. Fluid Mech. 236, 217257.

C. K. K. Lun 1991 Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539559.

M. R. Maxey 1987 The gravitional settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.

P. P. Mitrano , J. Zenk , S. Benyahia , J. Galvin , S. Dahl  & C. Hrenya 2014 Kinetic-theory predictions of clustering instabilities in granular flows: beyond the small Knudsen regime. J. Fluid Mech. 738, R2, 12 pages.

L. Pan  & P. Padoan 2010 Relative velocity of inertial particles in turbulent flows. J. Fluid Mech. 661, 73107.

P. Pepiot  & O. Desjardins 2012 Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler–Lagrange approach. Powder Technol. 220, 104121.

N. Sela  & I. Goldhirsch 1998 Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361, 4174.

O. Simonin , L. I. Zaichik , V. M. Alipchenkov  & P. Février 2006 Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: the mesoscopic Eulerian formalism and the two-point probability density function method. Phys. Fluids 18, 125107.

J. J. Wylie  & D. L. Koch 2000 Particle clustering due to hydrodynamic interactions. Phys. Fluids 12, 964970.

J. J. Wylie , D. L. Koch  & A. J. C. Ladd 2003 Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480, 95118.

H. Xu , M. Louge  & A. Reeves 2003 Solutions of the kinetic theory for bounded collisional granular flows. Contin. Mech. Thermodyn. 15, 321349.

H. Xu , R. Verberg , D. L. Koch  & M. Y. Louge 2009 Dense, bounded shear flows of agitated solid spheres in a gas at intermediate Stokes and finite Reynolds numbers. J. Fluid Mech. 618, 181208.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 143 *
Loading metrics...

Abstract views

Total abstract views: 189 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th September 2017. This data will be updated every 24 hours.