Skip to main content
×
Home

The surprising relevance of a continuum description to granular clusters

  • M. Y. Louge (a1)
Abstract
Abstract

Nature shuns homogeneity. In turbulent clouds, industrial reactors and geophysical flows, discrete particles arrange in clusters, posing difficult challenges to theory. A persistent question is whether clusters can be modelled with continuum equations. Recent evidence presented by Mitrano et al. (J. Fluid Mech., vol. 738, 2014, R2) indicates that suitable equations can predict the formation of clusters in granular flows, despite violating the simplifying assumptions upon which they are based.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The surprising relevance of a continuum description to granular clusters
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The surprising relevance of a continuum description to granular clusters
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The surprising relevance of a continuum description to granular clusters
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: MYL3@cornell.edu
References
Hide All
Agrawal K., Loezos P. N., Syamlal M. & Sundaresan S. 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151185.
Agarwal R. K., Yun K.-Y. & Balakrishnan R. 2001 Beyond Navier–Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13, 30613085.
Alsmeyer H. 1976 Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497613.
Bec J., Biferale L., Cencini M., Lanotte A. S. & Toschi F. 2010 Intermittency in the velocity distribution of heavy particles in turbulence. J. Fluid Mech. 646, 527536.
Brenner H. 2005 Navier-Stokes revisited. Physica A 349, 60132.
Brilliantov N., Salueña C., Schwager T & Pöschel T. 2004 Transient structures in a granular gas. Phys. Rev. Lett. 93, 134301.
Capecelatro J. & Desjardins O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.
Chun J., Koch D. L., Rani S. L., Ahluwalia A. & Collins L. R. 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.
Desjardins O., Fox R. O. & Villedieu P. 2008 A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys. 227, 25142539.
Duncan K., Mehlig B., Östlund S. & Wilkinson M. 2005 Clustering by mixing flows. Phys. Rev. Lett. 95, 240602.
Fox R. O. 2012 Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 4776.
Garzó V. 2005 Instabilities in a free granular fluid described by the Enskog equation. Phys. Rev. E 72, 021106.
Garzó V. & Dufty J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.
Goldhirsch I. & Zanetti G. 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 16191622.
Greenshields C. J. & Reese J. M. 2007 The structure of shock waves as a test of Brenner’s modifications to the Navier–Stokes equations. J. Fluid Mech. 580, 407429.
Helland E., Bournot H., Occelli R. & Tadrist L. 2007 Drag reduction and cluster formation in a circulating fluidised bed. Chem. Engng Sci. 62, 148158.
van der Hoef M. A., van Sint Annaland M., Deen N. G. & Kuipers J. A. M. 2008 Numerical simulation of dense gas–solid fluidized beds: a multiscale modelling strategy. Annu. Rev. Fluid Mech. 40, 4770.
Hopkins M. A., Jenkins J. T. & Louge M. Y. 1993 On the structure of three-dimensional shear flows. Mech. Mater. 16, 179187.
Jenkins J. T. & Richman M. W. 1988 Plane simple shear of smooth inelastic circular disks: the anisotropy of the second moment in the dilute and dense limits. J. Fluid Mech. 192, 313328.
Jenkins J. T. & Zhang C. 2002 Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 12281235.
Kumaran V. 2006 The constitutive relation for the granular flow of rough particles, and its application to the flow down an inclined plane. J. Fluid Mech. 561, 142.
Longmire E. K. & Eaton J. K. 1992 Structure of a particle-laden round jet. J. Fluid Mech. 236, 217257.
Lun C. K. K. 1991 Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539559.
Maxey M. R. 1987 The gravitional settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.
Mitrano P. P., Garzó V., Hilger A. M., Ewasko C. J. & Hrenya C. M. 2012 Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Phys. Rev. E 85, 041303.
Mitrano P. P., Zenk J., Benyahia S., Galvin J., Dahl S. & Hrenya C. 2014 Kinetic-theory predictions of clustering instabilities in granular flows: beyond the small Knudsen regime. J. Fluid Mech. 738, R2, 12 pages.
Pan L. & Padoan P. 2010 Relative velocity of inertial particles in turbulent flows. J. Fluid Mech. 661, 73107.
Pepiot P. & Desjardins O. 2012 Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler–Lagrange approach. Powder Technol. 220, 104121.
Sela N. & Goldhirsch I. 1998 Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361, 4174.
Simonin O., Zaichik L. I., Alipchenkov V. M. & Février P. 2006 Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: the mesoscopic Eulerian formalism and the two-point probability density function method. Phys. Fluids 18, 125107.
Wylie J. J. & Koch D. L. 2000 Particle clustering due to hydrodynamic interactions. Phys. Fluids 12, 964970.
Wylie J. J., Koch D. L. & Ladd A. J. C. 2003 Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480, 95118.
Xu H., Louge M. & Reeves A. 2003 Solutions of the kinetic theory for bounded collisional granular flows. Contin. Mech. Thermodyn. 15, 321349.
Xu H., Verberg R., Koch D. L. & Louge M. Y. 2009 Dense, bounded shear flows of agitated solid spheres in a gas at intermediate Stokes and finite Reynolds numbers. J. Fluid Mech. 618, 181208.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 152 *
Loading metrics...

Abstract views

Total abstract views: 212 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.