Skip to main content
×
×
Home

Suspension dynamics: moving beyond steady

  • Jason E. Butler (a1)
Abstract

The dynamics of flowing, concentrated suspensions of non-colloidal particles continues to surprise, despite decades of work and the widespread importance of suspension transport properties to industrial processes and natural phenomena. Blanc, Lemaire & Peters (J. Fluid Mech., 2014, vol. 746, R4) report a striking example. They probed the time-dependent dynamics of concentrated suspensions of rigid and neutrally buoyant spheres by simultaneously measuring the oscillatory rheology and the sedimentation rate of a falling ball. The sedimentation velocity of the ball through the suspension depends strongly on the frequency of oscillation, though the rheology was found to be independent of frequency. The results demonstrate the complexities of suspension flows and highlight opportunities for improving models by exploring suspension dynamics and rheology over a wide range of conditions, beyond steady and unidirectional ones.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Suspension dynamics: moving beyond steady
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Suspension dynamics: moving beyond steady
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Suspension dynamics: moving beyond steady
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: butler@che.ufl.edu
References
Hide All
Acrivos, A. 1995 Shear-induced particle diffusion in concentrated suspensions of noncolloidal particles. J. Rheol. 39, 813826; Bingham Award Lecture—1994.
Blanc, F., Lemaire, E. & Peters, F. 2014 Tunable fall velocity of a dense ball in oscillatory cross-sheared concentrated suspensions. J. Fluid Mech. 746, R4.
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.
Bricker, J. M. & Butler, J. E. 2007 Correlation between stresses and microstructure in concentrated suspensions of non-Brownian spheres subject to unsteady shear flows. J. Rheol. 51, 735759.
Franceschini, F., Filippidi, E., Guazelli, É. & Pine, D. J. 2011 Transverse alignment of fibers in a periodically sheared suspension: an absorbing phase transition with a slowly-varying control parameter. Phys. Rev. Lett. 107, 250603.
Gadala-Maria, F. & Acrivos, A. 1980 Shear-induced structure in a concentrated suspension of spheres. J. Rheol. 24, 799814.
Hinch, E. J. 2011 The measurement of suspension rheology. J. Fluid Mech. 686, 14.
Lin, Y., Phan-Thien, N. & Khoo, B. C. 2013 Short-term and long-term irreversibility in particle suspensions undergoing small and large amplitude oscillatory stress. J. Rheol. 57, 13251346.
Morris, J. F. 2009 A review of microstructure in concentrated suspensions and its implication for rheology and bulk flow. Rheol. Acta 48, 909923.
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.
Nott, P. R., Guazzelli, É. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23, 043304.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 216 *
Loading metrics...

Abstract views

Total abstract views: 348 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th July 2018. This data will be updated every 24 hours.