Skip to main content Accessibility help

Suspension flow through an asymmetric T-junction

  • Sojwal Manoorkar (a1), Sreenath Krishnan (a2), Omer Sedes (a1), Eric S. G. Shaqfeh (a2) (a3) (a4), Gianluca Iaccarino (a2) and Jeffrey F. Morris (a1)...


The flow of a suspension through a bifurcating channel is studied experimentally and by computational methods. The geometry considered is an ‘asymmetric T’, as flow in the entering branch divides to either continue straight or to make a right angle turn. All branches are of the same square cross-section of side length $D$ , with inlet and outlet section lengths $L$ yielding $L/D=58$ in the experiments. The suspensions are composed of neutrally buoyant spherical particles in a Newtonian liquid, with mean particle diameters of $d=250~\unicode[STIX]{x03BC}\text{m}$ and $480~\unicode[STIX]{x03BC}\text{m}$ resulting in $d/D\approx 0.1$ to $d/D\approx 0.2$ for $D=2.4~\text{mm}$ . The flow rate ratio $\unicode[STIX]{x1D6FD}=Q_{\Vert }/Q_{0}$ , defined for the bulk, fluid and particles, is used to characterize the flow behaviour; here $Q_{\Vert }$ and $Q_{0}$ are volumetric flow rates in the straight outlet branch and inlet branch, respectively. The channel Reynolds number $Re=(\unicode[STIX]{x1D70C}DU)/\unicode[STIX]{x1D702}$ was varied over $0<Re<900$ , with $\unicode[STIX]{x1D70C}$ and $\unicode[STIX]{x1D702}$ the fluid density and viscosity, respectively, and $U$ the mean velocity in the inlet channel; the inlet particle volume fraction was $0.05\leqslant \unicode[STIX]{x1D719}_{0}\leqslant 0.30$ . Experimental and numerical results for single-phase Newtonian fluid both show $\unicode[STIX]{x1D6FD}$ increasing with $Re$ , implying more material tending toward the straight branch as the inertia of the flow increases. In suspension flow at small $\unicode[STIX]{x1D719}_{0}$ , inertial migration of particles in the inlet branch affects the flow rate ratio for particles ( $\unicode[STIX]{x1D6FD}_{\mathit{particle}}$ ) and suspension ( $\unicode[STIX]{x1D6FD}_{\mathit{suspension}}$ ). The flow split for the bulk suspension satisfies $\unicode[STIX]{x1D6FD}>0.5$ for $\unicode[STIX]{x1D719}_{0}<0.16$ while $\unicode[STIX]{x1D719}_{0}=0.16$ crosses from $\unicode[STIX]{x1D6FD}\approx 0.5$ to $\unicode[STIX]{x1D6FD}>0.5$ at $Re\approx 100$ . For $\unicode[STIX]{x1D719}_{0}\geqslant 0.2$ , $\unicode[STIX]{x1D6FD}<0.5$ at all $Re$ studied. A complex dependence of the mean solid fraction in the downstream branches upon inlet fraction $\unicode[STIX]{x1D719}_{0}$ and $Re$ is observed: for $\unicode[STIX]{x1D719}_{0}<0.1$ , the solid fraction in the straight downstream branch initially decreases with $Re$ , before increasing to surpass the inlet fraction at large $Re$ ( $Re\approx 500$ for $\unicode[STIX]{x1D719}_{0}=0.05$ ). At $\unicode[STIX]{x1D719}_{0}>0.1$ , the solid fraction in the straight branch satisfies $\unicode[STIX]{x1D719}_{\Vert }/\unicode[STIX]{x1D719}_{0}>1$ , and this ratio grows with $Re$ . Discrete-particle simulations employing immersed boundary and lattice-Boltzmann techniques are used to analyse these phenomena, allowing rationalization of aspects of this complex behaviour as being due to particle migration in the inlet branch.


Corresponding author

Email address for correspondence:


Hide All
Ahmed, G. M. Y. & Singh, A. 2011 Numerical simulation of particle migration in asymmetric bifurcation channel. J. Non-Newtonian Fluid Mech. 166, 4251.
Aidun, C. K., Lu, Y. & Ding, J.-E. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
Asmolov, E. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at a large channel Reynolds number. J. Fluid Mech. 381, 6387.
Bhagat, A. A. S., Kuntaegowdanahalli, S. S. & Papautsky, I. 2008 Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys. Fluids 20, 101702.
Boyer, F., Pouliquen, Q. & Guazzelli, E. 2011 Dense suspension in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.
Bugliarello, G. & Hsiao, G. C. C. 1964 Phase separation in suspensions flowing through bifurcations: a simplified hemodynamic model. Science 143 (3605), 469471.
Chun, B. & Ladd, A. C. J. 2006 Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids 18, 031704.
Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y. & Morris, J. F. 2009 Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys. Rev. Lett. 102, 108301.
Doyeux, V., Podgorski, T., Peponas, S., Ismail, M. & Coupier, G. 2011 Spheres in the vicinity of a bifurcation: elucidating the Zweifach-Fung effect. J. Fluid Mech. 674, 359388.
Einstein, A. 1906 Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. (4) 19, 289306.
Enden, G. & Popel, A. S. 1994 A numerical study of plasma skimming in small vascular bifurcations. Trans. ASME J. Biomech. Engng 116 (1), 7988.
Garagash, D., Lecampion, B. & Desroches, J. 2015 Pressure-driven suspension flow near jamming. Phys. Rev. Lett. 114, 088301.
Garagash, D. I. & Lecampion, B. 2014 Confined flow of suspension modeled by a frictional rheology. J. Fluid Mech. 759, 197235.
Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D. & Periaux, J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169 (2), 363426.
Guazzelli, É. & Morris, J. F. 2012 A Physical Introduction to Suspension Dynamics. Cambridge University Press.
Haddadi, H. & Morris, J. F. 2014 Microstructure and rheology of finite inertia neutrally buoyant suspensions. J. Fluid Mech. 749, 431459.
Haddadi, H., Shojaei-Zadeh, S. & Morris, J. F. 2016 Lattice-Boltzmann simulation of inertial particle-laden flow around an obstacle. Phys. Rev. Fluids 1, 024201.
Ham, F. 2007 An efficient scheme for large eddy simulation of low-Ma combustion in complex configurations. In Annu. Res. Briefs, p. 41. Center for Turbulence Research, Stanford University.
Ham, F., Mattsson, K. & Iaccarino, G. 2006 Accurate and stable finite volume operators for unstructured flow solvers. In Annu. Res. Briefs, pp. 243261. Center for Turbulence Research, Stanford University.
Hampton, R. E., Mammoli, A. A., Graham, A. L., Tetlow, W. & Altobelli, S. A. 1997 Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41, 621640.
Han, M., Kim, C., Kim, M. & Lee, S. 1999 Particle migration in tube flow of suspesnsion. J. Rheol. 43 (197), 11571174.
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flow. J. Fluid Mech. 65, 365400.
Iwanami, S. & Suu, T. 1969 Study on flow characteristics in right-angled pipe fittings. Bull. JSME 12 (53), 10511061.
Kempe, T. & Fröhlich, J. 2012a Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. J. Fluid Mech. 709, 445489.
Kempe, T. & Fröhlich, J. 2012b An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231 (9), 36633684.
Koh, C. J., Hookham, P. & Leal, L. G. 1994 An experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech. 266, 132.
Krieger, I. M. 1972 Rheology of monodisperse lattices. Adv. Colloid Interface Sci. 3 (2), 111136.
Krishnan, S., Shaqfeh, E. S. G. & Iaccarino, G. 2017 Fully resolved viscoelastic particulate simulations using unstructured grids. J. Comput. Phys. 338, 313338.
Kulkarni, P. M., Manoorkar, S., Morris, J. F. & Tonmukayakul, N.2016 Determining flow through a fracture junction in a complex fracture network. US Patent 9,418,184.
Ladd, A. J. C. 1994a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 21, 285309.
Ladd, A. J. C. 1994b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.
Lashgari, I., Picano, F., Breugem, W. P. & Brandt, L. 2016 Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime. Intl J. Multiphase Flow 78, 1224.
Liepsch, D. & Moravec, S. 1982 Measurement and calculations of laminar flow in a ninety degree bifurcation. J. Biomech. 15 (7), 473485.
Matas, J. P., Morris, J. F. & Guazzelli, E. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.
Matas, J. P., Morris, J. F. & Guazzelli, E. 2009 Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech. 621, 5967.
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.
Miura, K., Itano, T. & Sugihara-Seki, M. 2014 Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels. J. Fluid Mech. 749, 320330.
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. Soc. Rheol. 48 (5), 12131237.
Morris, J. F. 2009 A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48, 909923.
Moshkin, N. & Yambangwi, D. 2009 Steady viscous incompressible flow driven by a pressure difference in a planar T-junction channel. Intl J. Comput. Fluid Dyn. 23 (3), 259270.
Neary, V. S. & Sotiropoulos, F. 1996 Numerical investigation of laminar flows through 90-degree diversions of rectangular cross-section. Comput. Fluids 25 (2), 95118.
Nguyen, N.-Q. & Ladd, A. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66 (4), 04708.
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.
Pedley, T. J. 2008 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.
Pries, A. R., Secomb, P., Gaehtgens, P. & Gross, J. F. 1990 Blood flow in microvascular networks. Circulat. Res. 67, 826834.
Roberts, B. W. & Olbricht, W. L. 2006 Flow-induced particulate separations. AIChE J. 49 (11), 28422849.
Roscoe, R. 1952 The viscosity of suspension of rigid spheres. Brit. J. Appl. Phys. 3, 267269.
Rubinow, S. I. & Keller, J. B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447459.
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.
Schonberg, J. A. & Hinch, E. J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517524.
Segré, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 109210.
Shen, H. H., Satake, M., Mehrabadi, M., Chang, C. S. & Campbell, C. S.(Eds) 1992 Advances in Micromechanics of Granular Materials. Elsevier.
Warpinski, N. R., Mayerhofer, M. J., Vincet, M. C., Cipolla, C. L. & Lolon, E. P. 2009 Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity. J. Can. Petrol. Technol. 48 (10), 3951.
Xi, C. & Shapley, N. C. 2008 Flow of a concentrated suspension through an axisymmetric bifurcation. J. Rheol. 52 (2), 625647.
Yan, Z.-Y., Acrivos, A. & Weinbaum, S. 1991 A three-dimensional analysis of plasma skimming at microvascular bifurcations. Microvasc. Res. 42 (1), 1738.
Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185220.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Manoorkar et al. supplementary movie 1
Experiment at Φ0 = 0.05, d/D = 0.2, Re = 200. Video is 100 times slower than real time.

 Video (5.7 MB)
5.7 MB

Manoorkar et al. supplementary movie 2
Immersed boundary simulation at Φ0 = 0.05, d/D = 0.2, Re = 200."The video shows the entry and bifurcation regions separately as well as the full channel view as the particles enter and reach a steady state flow.

 Video (32.5 MB)
32.5 MB

Manoorkar et al. supplementary movie 3
Comparison of experiment and immersed boundary simulation in bifurcation region at Φ0 = 0.05, d/D = 0.2, Re = 300 for IB and Re = 311 for experiments.

 Video (9.5 MB)
9.5 MB

Manoorkar et al. supplementary movie 4
Experiment at Φ0 = 0.05, d/D = 0.2, Re = 415. Video is 100 times slower than real time.

 Video (6.3 MB)
6.3 MB

Manoorkar et al. supplementary movie 5
Comparison of experiment and immersed boundary simulation in bifurcation region at Φ0 = 0.05, d/D = 0.2, Re = 600 for IB and Re = 620 for experiments.

 Video (6.1 MB)
6.1 MB

Manoorkar et al. supplementary movie 6
Experiment at Φ0 = 0.05, d/D = 0.2, Re = 830. Video is 100 times slower than real time.

 Video (10.5 MB)
10.5 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed