Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T07:37:04.267Z Has data issue: false hasContentIssue false

Swimming of an inertial squirmer and squirmer dumbbell through a viscoelastic fluid

Published online by Cambridge University Press:  23 August 2023

Zhenyu Ouyang
Affiliation:
Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, 315201 Ningbo, China
Zhaowu Lin*
Affiliation:
Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China
Jianzhong Lin*
Affiliation:
Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, 315201 Ningbo, China Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China
Nhan Phan-Thien
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
Jue Zhu
Affiliation:
Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, 315201 Ningbo, China
*
Email addresses for correspondence: linzhaowu@zju.edu.cn, mecjzlin@public.zju.edu.cn
Email addresses for correspondence: linzhaowu@zju.edu.cn, mecjzlin@public.zju.edu.cn

Abstract

We investigate the hydrodynamics of a spherical and dumbbell-shaped swimmer in a viscoelastic fluid, modelled by the Giesekus constitutive equation. The ‘squirmer’, a model of a micro-swimmer with tangential surface waves at its boundaries, is simulated utilizing a direct-forcing fictitious domain method. We consider the competitive effects of the fluid inertia and elasticity on the locomotion of the swimmers. For the neutral squirmer, its speed increases monotonically with increasing Reynolds number in the Giesekus fluid, in contrast to holding a constant speed in a Newtonian one. Meanwhile, the speed of the finite inertial squirmer increases monotonically with fluid elasticity, as measured by the Weissenberg number. Regarding the dumbbell-shaped swimmers in the Giesekus fluid, we find the pusher–puller (the puller is in front of the pusher) dumbbell swimming to be significantly faster than other dumbbells, providing practical guidance in assembling the complex micro-swimming devices. We further consider the squirmer's (or the dumbbell-shaped squirmer's) energy expenditure and hydrodynamic efficiency, finding that swimming in viscoelastic fluids expends less energy than its Newtonian counterpart, and the neutral squirmer expends more energy than a pusher or puller. The energy expenditure and hydrodynamic efficiency are relevant to steady swimming speeds, in which a faster counterpart squirmer (dumbbell-shaped squirmer) expends less energy but has higher hydrodynamic efficiency.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckett, B.S. 1986 Biology: A Modern Introduction. Oxford University Press.Google Scholar
Binagia, J.P., Phoa, A., Housiadas, K.D. & Shaqfeh, E.S. 2020 Swimming with swirl in a viscoelastic fluid. J. Fluid Mech. 900, A4.CrossRefGoogle Scholar
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Cates, M.E. & MacKintosh, F.C. 2011 Active soft matter. Soft Matter 7 (7), 30503051.CrossRefGoogle Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
Chisholm, N.G., Legendre, D., Lauga, E. & Khair, A.S. 2016 A squirmer across Reynolds numbers. J. Fluid Mech. 796, 233256.CrossRefGoogle Scholar
Clopés, J., Gompper, G. & Winkler, R.G. 2020 Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. Soft Matter 16 (47), 1067610687.CrossRefGoogle ScholarPubMed
Clopés, J., Gompper, G. & Winkler, R.G. 2022 Alignment and propulsion of squirmer pusher–puller dumbbells. J. Chem. Phys. 156 (19), 194901.CrossRefGoogle ScholarPubMed
Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M. & Marrie, T.J. 1987 Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41 (1), 435464.CrossRefGoogle ScholarPubMed
Dasgupta, M., Liu, B., Fu, H.C., Berhanu, M., Breuer, K.S., Powers, T.R. & Kudrolli, A. 2013 Speed of a swimming sheet in Newtonian and viscoelastic fluids. Phys. Rev. E 87 (1), 013015.CrossRefGoogle ScholarPubMed
Datt, C., Natale, G., Hatzikiriakos, S.G. & Elfring, G.J. 2017 An active particle in a complex fluid. J. Fluid Mech. 823, 675688.CrossRefGoogle Scholar
Elfring, G.J. & Goyal, G. 2016 The effect of gait on swimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 234, 814.CrossRefGoogle Scholar
Gao, W. & Wang, J. 2014 Synthetic micro/nanomotors in drug delivery. Nanoscale 6 (18), 1048610494.CrossRefGoogle ScholarPubMed
Götze, I.O. & Gompper, G. 2010 Mesoscale simulations of hydrodynamic squirmer interactions. Phys. Rev. E 82 (4), 041921.CrossRefGoogle ScholarPubMed
Harman, M.W., Dunham-Ems, S.M., Caimano, M.J., Belperron, A.A., Bockenstedt, L.K., Fu, H.C., Radolf, J.D. & Wolgemuth, C.W. 2012 The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc. Natl Acad. Sci. 109 (8), 30593064.CrossRefGoogle ScholarPubMed
Housiadas, K.D. 2021 An active body in a phan-thien and tanner fluid: the effect of the third polar squirming mode. Phys. Fluids 33 (4), 043110.CrossRefGoogle Scholar
Housiadas, K.D., Binagia, J.P. & Shaqfeh, E.S.G. 2021 Squirmers with swirl at low Weissenberg number. J. Fluid Mech. 911, A16.CrossRefGoogle Scholar
Ishikawa, T. 2019 Stability of a dumbbell micro-swimmer. Micromachines 10 (1), 33.CrossRefGoogle ScholarPubMed
Ishikawa, T., Locsei, J.T. & Pedley, T.J. 2008 Development of coherent structures in concentrated suspensions of swimming model micro-organisms. J. Fluid Mech. 615, 401431.CrossRefGoogle Scholar
Ishikawa, T. & Pedley, T.J. 2008 Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100 (8), 088103.CrossRefGoogle ScholarPubMed
Ishikawa, T., Simmonds, M.P. & Pedley, T.J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88 (6), 062702.CrossRefGoogle Scholar
Katz, D.F. & Berger, S.A. 1980 Flagellar propulsion of human sperm in cervical mucus1. Biorheology 17 (1–2), 169175.CrossRefGoogle Scholar
Khair, A.S. & Chisholm, N.G. 2014 Expansions at small Reynolds numbers for the locomotion of a spherical squirmer. Phys. Fluids 26 (1), 011902.CrossRefGoogle Scholar
Kiørboe, T., Jiang, H. & Colin, S.P. 2010 Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods. Proc. R. Soc. B: Biol. Sci. 277 (1698), 32293237.CrossRefGoogle ScholarPubMed
Leshansky, A.M. 2009 Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments. Phys. Rev. E 80 (5), 051911.CrossRefGoogle ScholarPubMed
Li, C., Qin, B., Gopinath, A., Arratia, P.E., Thomases, B. & Guy, R.D. 2017 a Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data. J. R. Soc. Interface 14 (135), 20170289.CrossRefGoogle ScholarPubMed
Li, G., Lauga, E. & Ardekani, A.M. 2021 Microswimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 297, 104655.CrossRefGoogle Scholar
Li, G., Ostace, A. & Ardekani, A.M. 2016 Hydrodynamic interaction of swimming organisms in an inertial regime. Phys. Rev. E 94 (5), 053104.CrossRefGoogle Scholar
Li, G.-J., Karimi, A. & Ardekani, A.M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta 53 (12), 911926.CrossRefGoogle Scholar
Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & & Wang, J. 2017 b Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2 (4), eaam6431.CrossRefGoogle ScholarPubMed
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5 (2), 109118.CrossRefGoogle Scholar
Lin, Z. & Gao, T. 2019 Direct-forcing fictitious domain method for simulating non-Brownian active particles. Phys. Rev. E 100 (1), 013304.CrossRefGoogle ScholarPubMed
Magar, V., Goto, T. & Pedley, T.J. 2003 Nutrient uptake by a self-propelled steady squirmer. Q. J. Mech. Appl. Maths 56 (1), 6591.CrossRefGoogle Scholar
Magar, V. & Pedley, T.J. 2005 Average nutrient uptake by a self-propelled unsteady squirmer. J. Fluid Mech. 539 (1), 93112.CrossRefGoogle Scholar
More, R.V. & Ardekani, A.M. 2020 Motion of an inertial squirmer in a density stratified fluid. J. Fluid Mech. 905, A9.CrossRefGoogle Scholar
Navarro, R.M. & Pagonabarraga, I. 2010 Hydrodynamic interaction between two trapped swimming model micro-organisms. Eur. Phys. J. E 33 (1), 2739.CrossRefGoogle Scholar
Nganguia, H., Zheng, K., Chen, Y., Pak, O.S. & Zhu, L. 2020 A note on a swirling squirmer in a shear-thinning fluid. Phys. Fluids 32 (11), 111906.CrossRefGoogle Scholar
Ouyang, Z. & Lin, J. 2021 The hydrodynamics of an inertial squirmer rod. Phys. Fluids 33 (7), 073302.CrossRefGoogle Scholar
Ouyang, Z., Lin, J. & Ku, X. 2018 a Hydrodynamic properties of squirmer swimming in power-law fluid near a wall. Rheol. Acta 57 (10), 655671.CrossRefGoogle Scholar
Ouyang, Z., Lin, J. & Ku, X. 2018 b The hydrodynamic behavior of a squirmer swimming in power-law fluid. Phys. Fluids 30 (8), 083301.CrossRefGoogle Scholar
Ouyang, Z., Lin, J. & Ku, X. 2019 Hydrodynamic interaction between a pair of swimmers in power-law fluid. Intl J. Non-Linear Mech. 108, 7280.CrossRefGoogle Scholar
Ouyang, Z., Lin, Z., Lin, J., Yu, Z. & Phan-Thien, N. 2023 Cargo carrying with an inertial squirmer in a Newtonian fluid. J. Fluid Mech. 959, A25.CrossRefGoogle Scholar
Ouyang, Z., Lin, Z., Yu, Z., Lin, J. & Phan-Thien, N. 2022 Hydrodynamics of an inertial squirmer and squirmer dumbbell in a tube. J. Fluid Mech. 939, A32.CrossRefGoogle Scholar
Ouyang, Z. & Phan-Thien, N. 2021 Inertial swimming in a channel filled with a power-law fluid. Phys. Fluids 33 (11), 113312.CrossRefGoogle Scholar
Pak, O.S., Zhu, L.L., Brandt, L. & Lauga, E. 2012 Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys. Fluids 24 (10), 103102.CrossRefGoogle Scholar
Patteson, A.E., Gopinath, A., Goulian, M. & Arratia, P.E. 2015 Running and tumbling with E. coli in polymeric solutions. Sci. Rep. 5 (1), 15761.CrossRefGoogle Scholar
Pedley, T.J., Brumley, D.R. & Goldstein, R.E. 2016 Squirmers with swirl: a model for volvox swimming. J. Fluid Mech. 798, 165186.CrossRefGoogle Scholar
Sanchez, T., Chen, D.T., DeCamp, S.J., Heymann, M. & Dogic, Z. 2012 Spontaneous motion in hierarchically assembled active matter. Nature 491 (7424), 431434.CrossRefGoogle ScholarPubMed
Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A.R. 2010 Polar patterns of driven filaments. Nature 467 (7311), 7377.CrossRefGoogle ScholarPubMed
Smith, D.J., Gaffney, E.A., Gadêlha, H., Kapur, N. & Kirkman-Brown, J.C. 2009 Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell Motil Cytoskel. 66 (4), 220236.CrossRefGoogle ScholarPubMed
Vaithianathan, T. & Collins, L.R. 2003 Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. J. Comput. Phys. 187 (1), 121.CrossRefGoogle Scholar
Wang, S. & Ardekani, A. 2012 Inertial squirmer. Phys. Fluids 24 (10), 101902.CrossRefGoogle Scholar
Wensink, H.H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R.E., Löwen, H. & Yeomans, J.M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. 109 (36), 1430814313.CrossRefGoogle ScholarPubMed
Wickramarathna, L.N., Noss, C. & Lorke, A. 2014 Hydrodynamic trails produced by daphnia: size and energetics. PLoS ONE 9 (3), e92383.CrossRefGoogle ScholarPubMed
Winkler, R.G. & Gompper, G. 2020 The physics of active polymers and filaments. J. Chem. Phys. 153 (4), 040901.CrossRefGoogle ScholarPubMed
Yan, X., Zhou, Q., Vincent, M., Deng, Y., Yu, J., Xu, J., Xu, T., Tang, T., Bian, L., Wang, Y.-X.J., Kostarelos, K. & Zhang, L. 2017 Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2 (12), eaaq1155.CrossRefGoogle ScholarPubMed
Yu, Z. & Shao, X. 2007 A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227 (1), 292314.CrossRefGoogle Scholar
Yu, Z., Wang, P., Lin, J. & Hu, H.H. 2019 Equilibrium positions of the elasto-inertial particle migration in rectangular channel flow of Oldroyd-B viscoelastic fluids. J. Fluid Mech. 868, 316340.CrossRefGoogle Scholar
Zantop, A.W. & Stark, H. 2020 Squirmer rods as elongated microswimmers: flow fields and confinement. Soft Matter 16 (27), 64006412.CrossRefGoogle ScholarPubMed
Zhu, L., Do-Quang, M., Lauga, E. & Brandt, L. 2011 Locomotion by tangential deformation in a polymeric fluid. Phys. Rev. E 83 (1), 011901.CrossRefGoogle Scholar
Zhu, L., Lauga, E. & Brandt, L. 2012 Self-propulsion in viscoelastic fluids: pushers vs. pullers. Phys. Fluids 24 (5), 051902.CrossRefGoogle Scholar
Zöttl, A. & Stark, H. 2014 Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-Dimensional confinement. Phys. Rev. Lett. 112 (11), 118101.CrossRefGoogle ScholarPubMed