Skip to main content Accessibility help
×
Home

Symmetry breaking cilia-driven flow in the zebrafish embryo

  • Andrew A. Smith (a1) (a2), Thomas D. Johnson (a1) (a2), David J. Smith (a1) (a2) (a3) and John R. Blake (a1) (a2)

Abstract

Fluid mechanics plays a vital role in early vertebrate embryo development, an example being the establishment of left–right asymmetry. Following the dorsal–ventral and anterior–posterior axes, the left–right axis is the last to be established; in several species it has been shown that an important process involved with this is the production of a left–right asymmetric flow driven by ‘whirling’ cilia. It has previously been established in experimental and mathematical models of the mouse ventral node that the combination of a consistent rotational direction and posterior tilt creates left–right asymmetric flow. The zebrafish organizing structure, Kupffer’s vesicle, has a more complex internal arrangement of cilia than the mouse ventral node; experimental studies show that the flow exhibits an anticlockwise rotational motion when viewing the embryo from the dorsal roof, looking in the ventral direction. Reports of the arrangement and configuration of cilia suggest two possible mechanisms for the generation of this flow from existing axis information: (a) posterior tilt combined with increased cilia density on the dorsal roof; and (b) dorsal tilt of ‘equatorial’ cilia. We develop a mathematical model of symmetry breaking cilia-driven flow in Kupffer’s vesicle using the regularized Stokeslet boundary element method. Computations of the flow produced by tilted whirling cilia in an enclosed domain suggest that a possible mechanism capable of producing the flow field with qualitative and quantitative features closest to those observed experimentally is a combination of posteriorly tilted roof and floor cilia, and dorsally tilted equatorial cilia.

Copyright

Corresponding author

Email address for correspondence: D.J.Smith.2@bham.ac.uk

References

Hide All
1. Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.
2. Afzelius, B. A. 1976 A human syndrome caused by immotile cilia. Science 193 (4250), 317319.
3. Ainley, J., Durkin, S., Embid, R., Boindala, P. & Cortez, R. 2008 The method of images for regularized Stokeslets. J. Comput. Phys. 227 (9), 46004616.
4. Berdon, W. E., McManus, C. & Afzelius, B. 2004 More on Kartageners syndrome and the contributions of Afzelius and A.K. Siewert. Pediatr. Radiol. 34 (7), 585586.
5. Berdon, W. E. & Willi, U. 2004 Situs inversus, bronchiectasis, and sinusitis and its relation to immotile cilia: history of the diseases and their discoverers – Manes Kartagener and Bjorn Afzelius. Pediatr. Radiol. 34 (1), 3842.
6. Blake, J. R. 1971 A note on the image system for a stokeslet in a no-slip boundary. Math. Proc. Camb. Phil. Soc. 70, 303310.
7. Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. J. Engng Maths 8 (1), 2329.
8. Brokaw, C. J. 2005 Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia. Cell Motil. Cytoskel. 60 (1), 3547.
9. Cartwright, J. H. E., Piro, N., Piro, O. & Tuval, I. 2007 Embryonic nodal flow and the dynamics of nodal vesicular parcels. J. R. Soc. Interface 4 (12), 4955.
10. Cartwright, J. H. E., Piro, N., Piro, O. & Tuval, I. 2008 Fluid dynamics of nodal flow and left–right patterning in development. Dev. Dyn. 237 (12), 34773490.
11. Cartwright, J. H. E., Piro, O. & Tuval, I. 2004 Fluid-dynamical basis of the embryonic development of left–right asymmetry in vertebrates. Proc. Natl Acad. Sci. USA 101 (19), 72347239.
12. Cartwright, J. H. E., Piro, O. & Tuval, I. 2009 Fluid dynamics in developmental biology: moving fluids that shape ontogeny. HFSP J. 3 (2), 7793.
13. Cortez, R. 2001 The method of regularized Stokeslets. SIAM J. Sci. Comput. 23 (4), 12041225.
14. Cortez, R., Fauci, L. & Medovikov, A. 2005 The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming. Phys. Fluids 17 (031504), 114.
15. Drescher, K., Leptos, K. C., Tuval, I., Ishikawa, T., Pedley, T. J. & Goldstein, R. E. 2009 Dancing Volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102 (16), 168101.
16. Hashimoto, M., Shinohara, K., Wang, J., Ikeuchi, S., Yoshiba, S., Meno, C., Nonaka, S., Takada, S., Hatta, K., Wynshaw-Boris, A. & Hamada, H. 2010 Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 12 (2), 170176.
17. Hirokawa, N., Okada, Y. & Tanaka, Y. 2009 Fluid dynamic mechanism responsible for breaking the left–right symmetry of the human body: the nodal flow. Annu. Rev. Fluid Mech. 41, 5372.
18. Ibañes, M. & Belmonte, J. C. I. 2009 Left-right axis determination. WIREs: Syst. Biol. Med. 1 (2), 210219.
19. Ishikawa, T. & Pedley, T. J. 2007 Diffusion of swimming model micro-organisms in a semi-dilute suspension. J. Fluid Mech. 588, 437462.
20. Kartagener, M. 1933 Zur Pathogenese der Bronchiektasien. Lung 84 (1), 7385.
21. Kawakami, Y., Raya, Á, Raya, R. M., Rodríguez-Esteban, C. & Belmonte, J. C. I. 2005 Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435 (7039), 165171.
22. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. 1995 Stages of embryonic development of the zebrafish. Am. J. Anat. 203 (3), 253310.
23. Kramer-Zucker, A. G., Olale, F., Haycraft, C. J., Yoder, B. K., Schier, A. F. & Drummond, I. A. 2005 Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132 (8), 19071921.
24. Kreiling, J. A., Prabhat, W. G. & Creton, R. 2007 Analysis of Kupffer’s vesicle in zebrafish embryos using a cave automated virtual environment. Dev. Dyn. 236 (7), 19631969.
25. Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. 2002 Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418 (6893), 9699.
26. Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M. & Hirokawa, N. 1998 Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95 (6), 829837.
27. Nonaka, S., Yoshiba, S., Watanabe, D., Ikeuchi, S., Goto, T., Marshall, W. F. & Hamada, H. 2005 De novo formation of left–right asymmetry by posterior tilt of nodal cilia. PLoS Biol. 3 (8), 14671472.
28. Okabe, A., Boots, B. N., Sugihara, K. & Chiu, S. 1992 Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. J. Wiley.
29. Okabe, N., Xu, B. & Burdine, R. D. 2008 Fluid dynamics in zebrafish Kupffer’s vesicle. Dev. Dyn. 237 (12), 36023612.
30. Okada, Y., Takeda, S., Tanaka, Y., Belmonte, J. C. I. & Hirokawa, N. 2005 Mechanism of nodal flow: a conserved symmetry breaking event in left–right axis determination. Cell 121 (4), 633644.
31. Otto, S. R., Yannacopoulos, A. N. & Blake, J. R. 2001 Transport and mixing in Stokes flow: the effect of chaotic dynamics on the blinking stokeslet. J. Fluid Mech. 430, 126.
32. Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.
33. Persson, P. O. & Strang, G. 2004 A simple mesh generator in MATLAB. SIAM Rev. 46 (2), 329345.
34. Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
35. Rawls, J. F., Mellgren, E. M. & Johnson, S. L. 2001 How the zebrafish gets its stripes. Dev. Biol. 240 (2), 301314.
36. Smith, D. J. 2009 A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow. Proc. R. Soc. Lond. A 465, 36053626.
37. Smith, D. J., Blake, J. R. & Gaffney, E. A. 2008 Fluid mechanics of nodal flow due to embryonic primary cilia. J. R. Soc. Interface 5 (22), 567573.
38. Smith, D. J., Gaffney, E. A. & Blake, J. R. 2007 Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid. Bull. Math. Biol. 69 (5), 14771510.
39. Smith, D. J., Smith, A. A. & Blake, J. R. 2011 Mathematical embryology: the fluid mechanics of nodal cilia. J. Engng Maths 70, 255279.
40. Sulik, K., Dehart, D. B., Inagaki, T., Carson, J. L., Vrablic, T., Gesteland, K. & Schoenwolf, G. C. 1994 Morphogenesis of the murine node and notochordal plate. Am. J. Anat. 201 (3), 260278.
41. Supatto, W., Fraser, S. E. & Vermot, J. 2008 An all-optical approach for probing microscopic flows in living embryos. Biophys. J. 95 (4), 2931.
42. Supatto, W. & Vermot, J. 2011 From cilia hydrodynamics to zebrafish embryonic development. Curr. Topics Dev. Biol. 95, 33.
43. Tanaka, Y., Okada, Y. & Hirokawa, N. 2005 FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature 435 (7039), 172177.
44. Taylor, M. A., Wingate, B. A & Vincent, R. E. 2001 An algorithm for computing Fekete points in the triangle. SIAM J. Numer. Anal. 38 (5), 17071720.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Symmetry breaking cilia-driven flow in the zebrafish embryo

  • Andrew A. Smith (a1) (a2), Thomas D. Johnson (a1) (a2), David J. Smith (a1) (a2) (a3) and John R. Blake (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed