Ayala, D. & Protas, B.
2014
Maximum palinstrophy growth in 2D incompressible flows. J. Fluid Mech.
742, 340–367.

Bardos, C. & Titi, E. S.
2007
Euler equations of incompressible ideal fluids. Russ. Math. Surv.
62, 409–451.

Beale, J. T., Kato, T. & Majda, A.
1984
Remarks on the breakdown of smooth solutions for the 3-d Euler equations. Commun. Math. Phys.
94, 61–66.

de Boor, C.
1978
A Practical Guide to Splines. Springer.

Brachet, M. E., Bustamante, M. D., Krstulovic, G., Mininni, P. D., Pouquet, A. & Rosenberg, D.
2013
Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor–Green symmetries. Phys. Rev. E
87 (1), 013110.

Bustamante, M. D.
2011
3D Euler equations and ideal MHD mapped to regular systems: Probing the finite-time blowup hypothesis. Physica D
240 (13), 1092–1099.

Bustamante, M. D. & Brachet, M.
2012
Interplay between the Beale–Kato–Majda theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity problem. Phys. Rev. E
86 (6), 066302.

Bustamante, M. D. & Kerr, R. M.
2008
3D Euler about a 2D symmetry plane. Physica D
237 (14–17), 1912–1920.

Cantwell, B. J.
1992
Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A
4 (4), 782–793.

Constantin, P.
2000
The Euler equations and nonlocal conservative Riccati equations. Int. Math. Res. Not. IMRN
9, 455–465.

Cottet, G.-H. & Koumoutsakos, P. D.
2000
Vortex Methods. Cambridge University Press.

Cottet, G.-H., Salihi, M. L. O. & El Hamraoui, M.
1999
Multi-purpose regridding in vortex methods. ESAIM Proc.
94–103.

Deng, J. H., Thomas, Y. & Yu, X.
2005
Geometric properties and nonblowup of 3D incompressible Euler flow. Commun. Part. Diff. Equ.
30 (1–2), 225–243.

Donzis, D. A., Gibbon, J. D., Gupta, A., Kerr, R. M., Pandit, R. & Vincenzi, D.
2013
Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations. J. Fluid Mech.
732, 316–331.

Euler, L.
1761
Principia motus fluidorum. Novi Commentarii Acad. Sci. Petropolitanae
6, 271–311.

Frisch, U. & Villone, B.
2014
Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. Eur. Phys. J. H
39 (3), 325–351.

Gibbon, J. D.
2008
The three-dimensional Euler equations: where do we stand?
Physica D
237, 1894–1904.

Gibbon, J. D.
2013
Dynamics of scaled norms of vorticity for the three-dimensional Navier–Stokes and Euler equations. Procedia IUTAM
7, 39–48.

Gibbon, J. D., Fokas, A. S. & Doering, C. R.
1999
Dynamically stretched vortices as solutions of the 3D Navier–Stokes equations. Physica D
132 (4), 497–510.

Gibbon, J. D., Moore, D. R. & Stuart, J. T.
2003
Exact, infinite energy, blow-up solutions of the three-dimensional Euler equations. Nonlinearity
16 (5), 1823–1831.

Gibbon, J. D. & Ohkitani, K.
2001
Singularity formation in a class of stretched solutions of the equations for ideal magneto-hydrodynamics. Nonlinearity
14 (5), 1239–1264.

Grafke, T. & Grauer, R.
2013
Finite-time Euler singularities: a Lagrangian perspective. Appl. Math. Lett.
26 (4), 500–505.

Grafke, T., Homann, H., Dreher, J. & Grauer, R.
2008
Numerical simulations of possible finite time singularities in the incompressible Euler equations: comparison of numerical methods. Physica D
237 (14), 1932–1936.

Hou, T. Y. & Li, R.
2006
Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci.
16 (6), 639–664.

Hou, T. Y. & Li, R.
2007
Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys.
226 (1), 379–397.

Kerr, R. M.
1993
Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids
5, 1725–1746.

Kerr, R. M.
2013
Bounds for Euler from vorticity moments and line divergence. J. Fluid Mech.
729, R2.

Kiselev, A. & Zlatos, A.Blow up for the 2D Euler equation on some bounded domains. Preprint 2014, arXiv:1406.3648v1 math.AP.
Knott, G. D.
2000
Interpolating Cubic Splines. Birkhäuser.

Kolmogorov, A.
1941
The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR
30, 301–305.

Koumoutsakos, P.
2005
Multiscale flow simulations using particles. Ann. Rev.
37, 457–487.

Kuznetsov, E. A.
2006
Vortex line representation for the hydrodynamic type equations. J. Nonlinear Math. Phys.
13 (1), 64–80.

Kuznetsov, E. A. & Ruban, V. P.
2000
Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems. Phys. Rev. E
61 (1), 831–841.

Li, D. & Rodrigo, J.
2009
Blow up for the generalized surface quasi-geostrophic equation with supercritical dissipation. Commun. Math. Phys.
286 (1), 111–124.

Lu, L. & Doering, C. R.
2008
Limits on enstrophy growth for solutions of the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J.
57 (6), 2693–2728.

Luo, G. & Hou, T. Y.
2014
Potentially singular solutions of the 3D axisymmetric Euler equations. Proc. Natl Acad. Sci. USA
111 (36), 12968–12973.

Mailybaev, A. A.
2013
Blowup as a driving mechanism of turbulence in shell models. Phys. Rev. E
87, 053011.

Monaghan, J. J.
1985
Extrapolating B splines for interpolation. J. Comput. Phys.
60 (2), 253–262.

Ohkitani, K. & Gibbon, J. D.
2000
Numerical study of singularity formation in a class of Euler and Navier–Stokes flows. Phys. Fluids
12 (12), 3181–3194.

Orlandi, P., Pirozzoli, S., Bernardini, M. & Carnevale, G. F.
2014
A minimal flow unit for the study of turbulence with passive scalars. J. Turbulence
15 (11), 731–751.

Perlin, M. & Bustamante, M. D.A robust quantitative comparison criterion of two signals based on the Sobolev norm of their difference. Preprint 2014, arXiv:1412.6977.
Sulem, C., Sulem, P. L. & Frisch, H.
1983
Tracing complex singularities with spectral methods. J. Comput. Phys.
50 (1), 138–161.

Vieillefosse, P.
1984
Internal motion of a small element of fluid in an inviscid flow. Physica A
125 (1), 150–162.