Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 11
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Mellibovsky, F. and Eckhardt, B. 2012. From travelling waves to mild chaos: a supercritical bifurcation cascade in pipe flow. Journal of Fluid Mechanics, Vol. 709, p. 149.

    Pausch, Marina and Eckhardt, Bruno 2011. Chaos control applied to coherent states in transitional flows. Journal of Physics: Conference Series, Vol. 318, Issue. 3, p. 032005.

    Park, Jae Sung and Graham, Michael D. 2015. Exact coherent states and connections to turbulent dynamics in minimal channel flow. Journal of Fluid Mechanics, Vol. 782, p. 430.

    Eckhardt, Bruno 2012. Turbulence Transition in Shear Flows: Chaos in High-Dimensional Spaces. Procedia IUTAM, Vol. 5, p. 165.

    Pausch, Marina and Eckhardt, Bruno 2015. Direct and noisy transitions in a model shear flow. Theoretical and Applied Mechanics Letters, Vol. 5, Issue. 3, p. 111.

    Willis, A. P. Cvitanović, P. and Avila, M. 2013. Revealing the state space of turbulent pipe flow by symmetry reduction. Journal of Fluid Mechanics, Vol. 721, p. 514.

    Marques, F. Mellibovsky, F. and Meseguer, A. 2013. Fold-pitchfork bifurcation for maps withZ2symmetry in pipe flow. Physical Review E, Vol. 88, Issue. 1,

    de Lozar, A. Mellibovsky, F. Avila, M. and Hof, B. 2012. Edge State in Pipe Flow Experiments. Physical Review Letters, Vol. 108, Issue. 21,

    Algaba, A. Domínguez-Moreno, M.C. Merino, M. and Rodríguez-Luis, A.J. 2016. Takens–Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system. Communications in Nonlinear Science and Numerical Simulation, Vol. 30, Issue. 1-3, p. 328.

    Melnikov, Konstantin Kreilos, Tobias and Eckhardt, Bruno 2014. Long-wavelength instability of coherent structures in plane Couette flow. Physical Review E, Vol. 89, Issue. 4,

    Cvitanović, Predrag Borrero-Echeverry, Daniel Carroll, Keith M. Robbins, Bryce and Siminos, Evangelos 2012. Cartography of high-dimensional flows: A visual guide to sections and slices. Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 22, Issue. 4, p. 047506.

  • Journal of Fluid Mechanics, Volume 670
  • March 2011, pp. 96-129

Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow

  • F. MELLIBOVSKY (a1) and B. ECKHARDT (a2) (a3)
  • DOI:
  • Published online: 25 January 2011

The appearance of travelling-wave-type solutions in pipe Poiseuille flow that are disconnected from the basic parabolic profile is numerically studied in detail. We focus on solutions in the twofold azimuthally-periodic subspace because of their special stability properties, but relate our findings to other solutions as well. Using time-stepping, an adapted Krylov–Newton method and Arnoldi iteration for the computation and stability analysis of relative equilibria, and a robust pseudo-arclength continuation scheme, we unfold a double-zero (Takens–Bogdanov) bifurcating scenario as a function of Reynolds number (Re) and wavenumber (κ). This scenario is extended, by the inclusion of higher-order terms in the normal form, to account for the appearance of supercritical modulated waves emanating from the upper branch of solutions at a degenerate Hopf bifurcation. We provide evidence that these modulated waves undergo a fold-of-cycles and compute some solutions on the unstable branch. These waves are shown to disappear in saddle-loop bifurcations upon collision with lower-branch solutions, in accordance with the bifurcation scenario proposed. The travelling-wave upper-branch solutions are stable within the subspace of twofold periodic flows, and their subsequent secondary bifurcations could contribute to the formation of the phase space structures that are required for turbulent dynamics at higher Re.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Barkley 1990 Theory and predictions for finite-amplitude waves in two-dimensional plane Poiseuille flow. Phys. Fluids A 2 (6), 955970.

L. Boberg & U. Brosa 1988 Onset of turbulence in a pipe. Z. Naturforsch. A: Phys. Sci. 43, 697726.

R. Bogdanov 1975 Versal deformations of a singular point on the plane in the case of zero eigenvalues. Funct. Anal. Appl. 9, 144145.

U. Brosa & S. Grossmann 1999 Minimum description of the onset of pipe turbulence. Eur. Phys. J. B 9 (2), 343354.

Y. Duguet , C. C. T. Pringle & R. R. Kerswell 2008 aRelative periodic orbits in transitional pipe flow. Phys. Fluids 20 (11), 114102.

F. Dumortier , R. Roussarie , J. Sotomayor & H. Zoladek 1991 Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals. Springer.

B. Eckhardt 2009 Introduction. Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds' paper. Phil. Trans. R. Soc. Lond. A 367, 449455.

B. Eckhardt , H. Faisst , A. Schmiegel & T. M. Schneider 2008 Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. Lond. A 366, 12971315.

B. Eckhardt , T. M. Schneider , B. Hof & J. Westerweel 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.

U. Ehrenstein & W. Koch 1995 Homoclinic bifurcation in Blasius boundary-layer flow. Phys. Fluids 7, 12821291.

H. Faisst & B. Eckhardt 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91 (22), 224502.

P. Gaspard 1990 Measurement of the instability rate of a far-from-equilibrium steady state at an infinite period bifurcation. J. Phys. Chem. 94 (1), 13.

M. Golubitsky , V. G. LeBlanc & I. Melbourne 2000 Hopf bifurcation from rotating waves and patterns in physical space. J. Nonlinear Sci. 10 (1), 69101.

S. Grossmann 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72 (2), 603618.

J. Guckenheimer & P. Holmes 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.

B. Hof , C. W. H. van Doorne , J. Westerweel , F. T. M. Nieuwstadt , H. Faisst , B. Eckhardt , H. Wedin , R. R. Kerswell & F. Waleffe 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305 (5690), 15941598.

B. Hof , T. M. Schneider , J. Westerweel & B. Eckhardt 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.

E. Knobloch 1986 Normal forms for bifurcations at a double zero eigenvalue. Phys. Lett. A 115 (5), 199201.

M. Krupa 1990 Bifurcations of relative equilibria. SIAM J. Math. Anal. 21 (6), 14531486.

Y. A. Kuznetsov 1995 Elements of Applied Bifurcation Theory, 3rd edn.Springer.

C. K. Mamun & L. S. Tuckerman 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7 (1), 8091.

K. Meerbergen , A. Spence & D. Roose 1994 Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric. BIT 34 (3), 409423.

F. Mellibovsky & A. Meseguer 2009 Critical threshold in pipe flow transition. Phil. Trans. R. Soc. Lond. A 367, 545560.

A. Meseguer , M. Avila , F. Mellibovsky & P. Marques 2007 Solenoidal spectral formulations for the computation of secondary flows in cylindrical and annular geometries. Eur. Phys. J. Special Topics 146, 249259.

A. Meseguer & F. Mellibovsky 2007 On a solenoidal Fourier–Chebyshev spectral method for stability analysis of the Hagen–Poiseuille flow. Appl. Numer. Maths 57, 920938.

A. Meseguer & L. N. Trefethen 2003 Linearized pipe flow to Reynolds number 107. J. Comput. Phys. 186, 178197.

M. Nagata 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55 (2), 20232025.

C. C. T. Pringle , Y. Duguet & R. R. Kerswell 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 457472.

C. C. T. Pringle & R. R. Kerswell 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99 (7), 074502.

A. Quarteroni , R. Sacco & F. Saleri 2007 Numerical Mathematics, 2nd edn.Springer.

D. Rand 1982 Dynamics and symmetry: predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Anal. 79 (1), 137.

O. Reynolds 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935982.

J. Sanchez , F. Marques & J. M. Lopez 2002 A continuation and bifurcation technique for Navier–Stokes flows. J. Comput. Phys. 180 (1), 7898.

T. M. Schneider , B. Eckhardt & J. Vollmer 2007 aStatistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75 (6), 066313.

T. M. Schneider , B. Eckhardt & J. A. Yorke 2007 bTurbulence transition and edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.

J. D. Skufca , J. A. Yorke & B. Eckhardt 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 174101.

S. Smale 1967 Differentiable dynamical systems. I. Diffeomorphisms. Bull. Am. Math. Soc. 73 (6), 747817.

F. Takens 1974 Singularities of vector fields. Publ. Math. IHES 43, 47100.

F. Waleffe 1995 Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Stud. Appl. Maths 95 (3), 319343.

F. Waleffe 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.

J. Wang , J. Gibson & F. Waleffe 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98 (20), 204501.

A. P. Willis & R. R. Kerswell 2008 Coherent structures in localized and global pipe turbulence. Phys. Rev. Lett. 100 (12).

O. Y. Zikanov 1996 On the instability of pipe Poiseuille flow. Phys. Fluids 8 (11), 29232932.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *